BIOLOGIA GERAL E EXPERIMENTAL

PAULO EMÍLIO VANZOLINI (1924-2013)

Artigos completos publicados em BGE

EDITORES

Celso Morato de Carvalho - Instituto Nacional de Pesquisas da Amazônia, Manaus, Am

Jeane Carvalho Vilar - Faculdade Pio Décimo, Aracaju, Se

EDITORES ASSOCIADOS

Adriano Vicente dos Santos- Centro de Pesquisas Ambientais do Nordeste, Recife, Pe

Edson Fontes de Oliveira - Universidade Tecnológica Federal do Paraná, Londrina, Pr

Everton Amâncio dos Santos - Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, D.F.

Francisco Filho de Oliveira - Secretaria Municipal da Educação, Nossa Senhora de Lourdes, Se

Biologia Geral e Experimental é indexada nas Bases de Dados: Latindex, Biosis Previews, Biological Abstracts e Zoological Record.

Edição eletrônica: ISSN 1980-9689.
www.biologiageralexperimental.bio.br

Endereço: Biologia Geral e Experimental, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Avenida André Araújo no 2936, Aleixo - Manaus, Am, CEP 69060-001.
E-mail: cmorato@inpa.gov.br oujcanecarvalhovilar@hotmail.com

Aceita-se permuta.

Biologia Geral e Experimental

PAULO EMÍLIO VANZOLINI
 (1924-2013)

Artigos completos publicados em BGE

P.E. VANZOLINI

A partida da última expedição do Dr. Vanzolini foi acompanhada por seus amigos e pela família no dia 28 de abril de 2013, e bem ao seu estilo lembramos os versos da música que ele fez "quando eu for eu vou sem pena, pena vai ter quem ficar". Vanzo deixa, além das saudades, um rico acervo intelectual tanto na ciência quanto na música e, como ele mesmo dizia, se considerava o último dos viajantes. Tive o privilégio de aprender com ele a conhecer um pouco o mundo, em muitas das suas viagens das quais participei e também no Museu de Zoologia da USP onde ele começou a trabalhar na década de 1940 e foi seu diretor entre 1963 a 1993. Vanzolini foi um grande incentivador de BGE, tendo colaborado com vários trabalhos desde quando a revista começou em 2000 na Universidade Federal de Sergipe, com a ajuda dos meus estudantes de biologia da UFS. Como memória, neste volume nós reproduzimos os artigos do velho amigo Paulo Emílio Vanzolini publicados em BGE.

Biologia Geral e Experimental

Universidade Federal de Sergipe
Biol. Geral Exper., São Cristóvão, SE 4(1):3-10
25.iv. 2003

ISSN 1519-1982

A CONTRIBUTION TO THE ECOGEOGRAPHY OF THE BRASILIAN CERRADOS

P. E. Vanzolini ${ }^{1}$

Abstract

A survey was made aimed at evaluating the relative importance of gallery forest (on the river levees), backswamp and interfluvial cerrados to the general zoogeography of the domain, especially with regard to conservation problems. The sampling scheme comprised T-shaped arrays of pit-fall traps, the cross-member along the levee (in the gallery forest) and the stem extending across the backswamp. This scheme was used at two localities, on the left bank of the Rio Tocantins across the town of Ipueiras and on the right bank of a tributary, the Rio Manoel Alves Pequeno (or da Natividade), near its mouth. As a control, a grid of traps was set in the interfluvial cerrado between the Tocantins and the Manoel Alves. During a period of 6-8 days 136 frogs (8 species), 55 lizards (7 species) and one snake were collected. Among the lizards, Tropidurus torquatus showed preference for the backswamp, while T. oreadicus preferred the levee; Gymnodactylus amarali clearly preferred interfluvial cerrado. Among the frogs, Physalaemus cuvieri, the most abundant species, showed preference for the proximity of the river, Chiasmocleis centralis for the backswamp. The gallery forest was not found in this area to harbor a characteristic set of species. The animals sampled in this survey should not suffer from the interruption by flooding of gallery forest, either as residential areas or as faunal corridors. It remains to be seen whether the shores of hydroelectric lakes are ecologically analogous to river backswamps.

INTRODUCTION

The core area of the morphoclimatic domain of the cerrados (Ab'Saber, 1977; Pinto, 1990) is a continuous area of some 1.8 million square kilometers, of highlands of moderate altitude (300-900 m), with gentle, rolling topography, with a characteristically hierarchical drainage, covered by a type of vegetation traditionally called "cerrado" in Brasil, to which has frequently been applied, erroneously, I think, the name of "savanna". There is in fact a certain physiognomical resemblance, but the differences are major. Specifically, contrary to, e.g., African
savannas, cerrados have no water-saving adaptations, morphological (wax, thorns) or physiological (deciduousness, restriction of transpiration by closure of stomata). The climate (Graphs 1 and 2) is characterized by two contrasting seasons (BRASIL, 1941). Winter temperatures are cool, but equable. The monthly averages vary between 23.2° and $26.6^{\circ} \mathrm{C}$ in summer and between 21.9° and 27.1° in winter. The contrary happens to precipitation. Of a total of 1600-1800 mm/year, the 7 summer months contribute from 89 to 97%, the 5 winter months 3 to 11%. The very deep (up to 30 meters) soils store enough water to see to the demands of the

[^0]

Graphs 1 and 2. Monthly rainfall and average temperature at Porto Nacional, Tocantins (data from BRASIL, 1941).
vegetation, which does not need, as said, watersaving adaptations.

A characteristic feature of the cerrados is the presence of gallery, or ciliary, forests. The competence of rivers, their capacity of carrying materials in suspension, is a function of their velocity (Goudie, 1988). During flood, as the river overflows the banks, the current, by friction, loses speed and thus competence, and the heavier sediments are dropped. In this way is gradually built a longitudinal ridge, a levee, of coarse, sandy, well-aerated sediments, backed by a wider or narrower low, seasonally flooded area, the backswamp (in Brasil, varjão) where the finer silt is deposited, originating compact, poorly aerated soils. The gallery forests start at headwaters along creeks as rows of tall columnar burití palms (Mauritia), who like to keep their feet wet, but as soon as a levee appears, the proper gallery forest is established (Rodrigues \& Leitão-Filho, 2000). The term "gallery forest" is sometimes
loosely applied to any forest in a riparian position, but the proper sense of the term is strictly the forest on the levees of cerrado rivers.

The large Central Brasilian rivers run to the Amazon, and so the gallery forests of the fluvial system form a dendritic pattern converging towards the north. It is easy to understand that, if there is a fauna adapted and limited to ciliary forests (Alho, 1990; Hanski, 1999), the latter will function not only as areas of residence, but also, and very importantly, as faunal corridors, whose interruption may have drastic consequences to the fauna. The same reasoning can be applied to the backswamps. These two formations are unavoidable victims of dam building; it is thus essential that they be considered in any impact assessment. This is the problem I addressed in this work.

Design

In order to test the faunal roles of gallery forest and backswamp, as well as, additionally, the importance of microhabitats and of the interactions between habitats, three areas were sampled: Area A (Fig. 1), on the left bank of the Rio Tocantins, directly across the city of Ipueiras, at approximately $11^{\circ} 14^{\prime} \mathrm{S}, 48^{\circ} 28^{\prime} \mathrm{W}$. There was good, tall (15 m), dense gallery forest, backed by an extensive backswamp, grading rapidly into poor, battered cerrado.

Area B (Fig. 2), on the right bank of the Rio Manoel Alves Pequeno (or "da Natividade"), a tributary of the Tocantins on its right bank, close to the mouth, some 9 km SSE of Area A, at ca. 1119,4827 . The levee was high, but the ridge narrow and the forest sparse, rapidly passing into rather well-preserved cerrado.

Area C (Fig. 2), control, in a well-preserved patch of interfluvial cerrado between the rivers Tocantins and Manoel Alves. at ca. 1117, 4827, with three strata of vegetation, grass, shrubs and scattered trees.

Figure 1. Rio Tocantins, sampling area A.

Figure 2. Confluence of Rios Manoel Alves and Tocantins, sampling areas B and C.

We used pitfall traps, consisting of 20 liter buckets, diameter at the mouth 30 cm , buried flush with the ground, 4 meters apart, connected by 40 cm tall drift fences of black plastic sheet.

In Area A we placed 25 buckets inside the gallery forest, parallel to the river, and 45 buckets on a perpendicular row crossing the backswamp. They stayed in place for 8 days (April 23-30). In Area B we used a similar design, with 25 buckets on the levee and 43 inland. They stayed in place for 7 days (April 24-30). In Area C we arranged a grid of 5×8 buckets, which stayed in place for 6 days (April 25-30).

The traps were visited twice daily, in the morning and in the afternoon. The Appendix lists the materials collected, bucket by bucket and day by day.

Statistics

I used throughout the χ^{2} test, which is non-parametric and allows to locate the excesses and deficiencies of frequencies. The notations are:
gl degrees of freedom
ns not significant at the 5\% level

* significant at the 5\% level
** significant at the 1% level
*** significant at the 0.1% level

Species present

Anura

Leptodactytlidae
Adenomera martinezi (Bokermann, 1956)
Barycholos ternetzi (Miranda-Ribeiro, 1937)
Leptodactylus mystaceus (Spix, 1824)
Leptodactylus podicipinus (Cope, 1862)
Physalaemus cuvieri Fitzinger, 1826
Pseudopaludicola mystacalis (Cope, 1887)
Microhylidae
Chiasmocleis centralis Bokermann, 1952
Elachistocleis ovalis (Schneider, 1799)
Sauria
Gekkonidae
Gymnodactylus amarali Barbour, 1925

Gymnophthalmidae
Colobosaura modesta (Reinhardt \& Luetken, 1862)
Micrablepharus maximiliani (Reinhardt \& Luetken, 1862)

Polychridae
Anolis chrysolepis brasiliensis Vanzolini \& Williams, 1970

Tropiduridae
Tropidurus oreadicus Rodrigues, 1987
Tropidurus torquatus (Wied, 1820)
Amphisbaenia
Amphisbaenidae
Bronia sp in description by Carolina Castro-Mello, 2003

Serpentes
Colubridae
Apostolepis cf. cearensis Gomes, 1915

Analysis

Homogeneity of the areas (Table 1)
The three areas sampled, two of them riparian, differing in topography and vegetation, and one inland, differ significantly in the proportion of frogs and lizards (the only species of snake collected was not included in the analysis). As could be expected, the cerrado (Area C) is poorer in amphibians, both in number of species and of individuals ($\chi^{2}=42.930^{* * *}$, gl 2). Otherwise they do not differ significantly in the composition of the frog fauna ($\chi^{2}=11.945 \mathrm{~ns}$, gl 14), but differ regarding the lizards $\left(\chi^{2}=54.734\right.$ ***, gl 14). The difference resides mainly in the preference of Tropidurus torquatus for the backswamp and of Gymnodactylus amarali for the cerrado.

Table 1. Herpetofauna of the study areas.

	Area			Sum
Anura				
	A	B	C	
Adenomera martinezi				
Barycholos ternetzi	5	-	-	5
Leptodactyulus mystaceus	14	6	-	20
Leptodactylus podicipinus	1	-	-	1
Physalaemus cuvieri	5	4	-	9
Pseudopaludicola mystacalis	14	22	2	72
Chiasmocleis centralis	10	-	-	16
Elachistocleis ovalis	2	1	-	10
Sum	99	35	2	136

Sauria

Gymnodactylus amarali	1	-	4	5
Anolis chrysolepis brasiliensis	1	1	-	2
Tropidurus oreadicus	-	9	3	12
Tropidurus torquatus	14	1	-	15
Micrablepharus maximiliani	-	4	-	4
Ameiva ameiva	11	4	1	16
Cnemidophorus cf. ocellifer	-	-	1	1
Sum	27	19	9	55

The gallery forest and the backswamp (Tables 2 and 3)

Areas A and B permit an investigation of the faunistic personality of the segments of the

Table 2. Distance from the levee, area A.

	Buckets			
			Sum	
Anura	$1-25$	$26-50$	$51-70$	
Adenomera martinezi				
Barycholos ternetzi	-	-	5	5
Leptodactylus mystaceus	5	5	4	14
Leptodactylus podicipinus	-	-	1	1
Physalaemus cuvieri	-	2	3	5
Pseudopaludicola mystacalis	22	8	17	47
Chiasmocleis centralis Elachistocleis ovalis	-	2	10	15
Sum	1	8	2	10
	31	26	-	2
			42	99

Sauria

Gymnodactylus amarali	-	-	1	1
Anolis chrysolepis brasiliensis	-	-	1	1
Tropidurus torquatus Ameiva ameiva	4	2	7	13
Sum	8	-	3	11
	12	2	13	27

landscape. To do so, we assembled the buckets according to their distance from the top of the levee. In Area A we established 3 groups: buckets $1-25$, inside the gallery forest, buckets $26-50$ in the next 100 meters inland; and buckets 51-70 in the backswamp. In Area B we contrasted the forest (buckets 1-25) with the adjoining cerrado (buckets 26-68). Frogs and lizards were analyzed separately.

The distribution of frogs in Area A is heterogeneous $\left(\chi^{2}=37.652^{* * *}\right.$, gl 14): Physalaemus cuvieri, although occurring all over, prefers the proximity of the river; Chiasmocleis centralis favors the backswamp. The lizards of Area A showed no preferences ($\chi^{2}=6.948 \mathrm{~ns}$, gl 4).

In Area B the data, ackowledgedly scarce, showed no heterogeneity.

Comments

This study was undertaken at a not particularly favorable time of the year, past the reproductive season of the frogs and well into the dry season; not many specimens were collected,

Table 3. Area B, distance from the levee.

	Buckets		Sum
	1-25	26-68	
Barycholos ternetzi	4	2	6
Leptodactylus podicipinus	2	2	4
Physalaemus cuvieri	6	16	22
Pseudopaludicola mystacalis	-	2	2
Elachistocleis ovalis	-	1	1
Sum	12	23	35
Sauria			
Anolis chrysolepis brasiliensis	-	1	1
Tropidurus oreadicus	6	3	9
Tropidurus torquatus	-	1	1
Ameiva ameiva	4	-	4
Sum	10	5	15

notably only one snake. The design, however, permits some conclusions.

As to the major aims of the study, the gallery forest was not found, for the fauna sampled, to harbor a characteristic ensemble. I think this conclusion, at present valid for the time of the year and for the intensity of the sampling effort, will stand with regard to the terricolous element of the fauna: this will suffer no harm from the damming of rivers. On the contrary, even these limited data ascribe to the backswamp an important faunistic role, with corresponding conservation implications. I think it is indispensable to undertake a study similar to the present one on the shores of stabilized reservoirs, to verify whether these shores are the analogues of riverine backswamps.

Besides these conservationist considerations, there are some interesting ecological facts. The diversity in microhabitat preferences among widespread cerrado animals seems very promising. I am thinking especially of the differences between

Tropidurus torquatus and T. oreadicus, two of the commonest cerrado lizards. The decided preference of Gymnodactylus amarali for interfluvial cerrado is also noteworthy, as are the fine-grained discrepancies among frog species.

ACKNOWLEDGMENTS

This research was undertaken during studies of viability of large hydroelectric dams by Themag Engenharia e Gerenciamento, on behalf of REDE Empresas de Energia Elétrica. I thank them. C.W. Myers, and especially W. R. Heyer, contributed cogent and welcome criticisms. Celso Morato de Carvalho and Carolina Castro-Mello did the field work and identified the majority of specimens.

REFERENCES

Ab’Saber, A.N., 1977. Os domínios morfoclimáticos na América do Sul. Primeira aproximação. Geomorfologia (Inst. Geogr. Univ. S. Paulo) 52: 22 p.

Alho, C.J.R., 1990. Distribuição da fauna num gradiente de recursos em mosaico, p. 205-254 in M.N. Pinto, org., Cerrado: caracterização, ocupação e perspectivas.
BRASIL, Ministério da Agricultura, Serviço de Metorologia, 1941. Normais climatológicas. Rio de Janeiro. ix +167 p.
Goudie, A., ed. 1988. The encyclopaedic dictionary of physical geography (paperback). Oxford, New York: Blackwell. xvi + 528 p.
Hanski, I., 1999. Metapopulation ecology. Oxford etc.:Oxford Univerrsity Press (Oxford Series in Ecology and Evolution). ix +313 p. (reprinted 2001,2002)
Pinto, M.N., org., 1990. Cerrado: caracterização, ocupação e perspectivas. Brasilia: Universidade de Brasilia. 657 p., 1 mapa.

Rodrigues, R.R. \& H.F. Leitão-Filho, eds., 2000. Matas ciliares: conservação e recuperação. S. Paulo: Edusp, Fapesp. 320 p.

Bucket	Day/hr *	Species	Bucket	Dayhr *	Species
A1	24 M	Physalaemus cuvieri	A 20	23 M	Ameiva ameiva
A 2	23 T	Tropidurus torquatus		25 T	Tropidurus torquatus
	24 M	Physalaemus cuvieri		26 T	Ameiva ameiva
		Barycholos ternetzi	A 21	23 T	Ameiva ameiva
A 3	24 M	Barycholos ternetzii		24 M	Physalaemus cuvieri
	24 T	Physalaemus cuvieri		25 M	Barycholos ternetzii
	25 M	Apostolepis cf. cearensis	A 22	23 T	Ameiva ameiva
A 4	25 M	Physalaemus. cuvieri		24 T	Ameiva ameiva
A 5	25 M	Barycholos savagei		25 M	Physalaemus cuvieri
		Physalaemus cuvieri			Pseudopaludicola mystacalis
A 6	24 M	Physalaemus cuvieri		28 T	Ameiva ameiva
A 7	23 T	Tropidurus torquatus	A 23	23 M	Ameiva ameiva 2
	25 M	Physalaemus cuvieri		25 M	Physalaemus cuvieri
		Pseudopaludicola mystacalis			Barycholos ternetzii
A 8	24 M	Physalaemus cuvieri 3			Pseudopaludicola mystacalis
	25 M	Physalaemus cuvieri	A 25	24 M	Physalaemus cuvieri
A 9	25 M	Physalaemus cuvieri	A 26	24 M	Barycholos ternetzi
A 10	24 M	Physalaemus cuvieri	A 28	24 M	Physalaemus cuvieri
A 11	25 M	Elachistocleis ovalis	A 29	24 T	Tropidurus torquatus
A 12	24 M	Physalaemus cuvieri	A 30	24 M	Chiasmocleis centralis
	25 M	Physalaemus cuvieri		25 M	Leptodactylus podicipinus
A 15	24 M	Physalaemus cuvieri	A 33	23 M	Barycholos ternetzii
	28 T	Tropidurus torquatus		24 M	Pseudopaludicola mystacalis
A 16	24 M	Physalaemus cuvieri	A 35	25 M	Barycholos ternetzi
A 18	25 M	Physalaemus cuvieri	A 36	25 T	Tropidurus torquatus
				29 M	Leptodactylus podicipinus
A 38	24 M	Chiasmocleis centralis 2	A 56	25 M	Pseudopaludicola mystacalis
A 39	24 M	Chiasmocleis centralis	A 57	24 M	Adenomera martinezi
	25 M	Physalaemus cuvieri			Pseudopaludicola mystacalis
A 40	24 M	Chiasmocleis centralis		25 M	Physalaemus cuvieri 2
	25 M	Barycholos ternetzi	A 58	26 T	Anolis chrysolepis brasiliensis
		Pseudopaludicola mystacalis		28 M	Colobosaura modesta
		Physalaemus cuvieri	A 59	24 M	Ameiva ameiva

Continued

Bucket	Day/hr *	Species	Bucket	Dayhr *	Species
A 43	24 M	Physalaemus cuvieri 2		25 M	Chiasmocleis centralis
		Barycholos ternetzi		26 M	Leptodactylus podicipinus
	25 M	Physalaemus cuvieri	A 60	23 T	Tropidurus torquatus
A 44	24 M	Elachistocleis ovalis		24 M	Physalaemus cuvieri
		Chiasmocleis centralis		27 M	Leptodactylus podicipinus
A 45	24 M	Chiasmocleis centralis	A 61	24 M	Physalaemus cuvieri
A 47	24 M	Chiasmocleis centralis		24 T	Physalaemus cuvieri
A 50	24 M	Physalaemus cuvieri			Ameiva ameiva
	25 M	Physalaemus cuvieri		25 M	Physalaemus cuvieri 2
A 51	27 M	Leptodactylus mystaceus		27 M	Pseudopaludicola mystacalis
A 55	24 M	Physalaemus cuvieri	A 62	24 M	Adenomera martinezi
	25 M	Physalaemus cuvieri 2		25 M	Adenomera martinezi
		Adenomera martinezi			Barycholos ternetzei
	26 T	Tropidurus torquatus	A 63	24 M	Physalaemus cuvieri
A 56	24 M	Physalaemus cuvieri		24 T	Tropidurus torquatus
	25 M	Physalaemus cuvieri 2	A 64	24 T	Tropidurus torquatus
A 64	25 M	Physalaemus cuvieri	B 5	25 M	Physalaemus cuvieri
		Barycholos ternetzi		25 T	Ameiva ameiva
		Tropidurus torquatus	B 6	25 M	Physalaemus cuvieri
A 65	24 M	Physalaemus cuvieri			Barycholos ternetzi
	27 M	Pseudopaludicola mystacalis 2	B 7	25 M	Physalaemus cuvieri
	29 M	Gymnodactylus amarali			Barycholos ternetzi
A 66	23 T	Tropidurus torquatus	B 8	26 M	Physalaemus cuvieri
	25 M	Barycholos ternetzi	B 10	25 M	Tropidurus oreadicus
	26 M	Leptodactylus podicipinus	B 13	26 T	Ameiva ameiva
	27 M	Adenomera martinezi	B 14	26 T	Tropidurus oreadicus
		Pseudopaludicola mystacalis 2	B 15	26 M	Barycholos ternetzi
A 67	25 M	Physalaemus cuvieri	B 21	27 M	Leptodactylus podicipinus
		Pseudopaludicola mystacalis		30 M	Tropidurus oreadicus
A 68	24 T	Tropidurus torquatus	B 22	25 T	Tropidurus oreadicus
	25 M	Barycholos ternetzi	B 23	27 M	Micrablepharus maximiliani 2
	25 T	Ameiva ameiva	B 24	30 M	Ameiva ameiva

Continued

Bucket	Dayhr *	Species	Bucket	Dayhr *	Species
A 69	24 T	Physalaemus cuvieri	B 25	26M	Barycholos ternetzi
	26 T	Tropidurus torquatus		26 T	Tropidurus oreadicus
A 70	24 M	Chiasmocleis centralis	B 34	25 M	Physalaemus cuvieri
		Pseudopaludicola mystacalis	B 36	26 T	Micrablepharus maximiliani
			B 37	27 M	Elachistocleis ovalis
B 1	25 T	Tropidurus oreadicus		28 T	Tropidurus oreadicus
B 2	25 M	Physalaemus cuvieri 2	B 40	25 M	Pseudopaludicola mystacalis
B 3	27 M	Leptodactylus podicipinus	B 43	25 M	Barycholos ternetzi
B 4	25 T	Ameiva ameiva	B 44	25 M	Physalaemus cuvieri
B 48	25 M	Physalemus cuvieri	B 66	25 T	Physalemus cuvieri
	25 T	Pseudopaludicola sp.		26M	Physalemus cuvieri
B 50	25 M	Barycholos ternetzi	B 67	26 M	Physalemus cuvieri
	27 M	Leptodactylus podicipinus		28 T	Tropidurus oreadicus
B 52	26 T	Tropidurus oreadicus			Micranblepharus maximiliani
B 54	25 M	Physalemus cuvieri			
B 55	25 M	Physalemus cuvieri			
			C 12	26 T	Tropidurus oreadicus
B 57	25 M	Physalemus cuvieri			
			C 20	26M	Gymnodactylus amarali 2
B 58	25 M	Physalemus cuvieri 2			
			C 21	26M	Ameiva ameiva
	26M	Physalemus cuvieri	C 23	26M	Physalemus cuvieri
B 59	26M	Physalemus cuvieri 2			
	28 T	Anolis chrysolepis brasiliensis		27M	Tropidurus oreadicus
B 62			C 25	29 M	Tropidurus oreadicus
B 63	26M	Physalemus cuvieri			
		Leptodactylus podicipinus	C 27	26M	Gymnodactylus amarali
			C 31	30 M	Cnemidophorus cf. ocellifer
B 64	30 M	Tropidurus torquatus	C 36	29M	Gymnodactylus amarali

BIOLOGIA GERAL E EXPERIMENTAL

On the eggs of Brasilian Podocnemis (Testudines, Podocnemididae)

P.E.Vanzolini

UNIVERSIDADE FEDERAL DE SERGIPE

SÃO CRISTÓVÃO

BIOLOGIA GERAL E EXPERIMENTAL

UNIVERSIDADE FEDERAL DE SERGIPE

REITOR: José Fernandes de Lima		
VICE-REITOR: Josué Modesto dos Passos Subrinho		
COMISSÃO EDITORIAL (UFS)	COMISSÂO EDITORIAL ASSOCIADA	COMISSÃO DE REDAÇÃO
Angelo Roberto Antoniolli	Adriano Vicente - UFPE	Celso Morato de Carvalho
Arie Fitzgerald Blank	Edson Fontes de Oliveira -	Jeane Carvalho Vilar
Carlos Dias da Silva Júnior	UE Maringá/DBI/Nupelia	Murilo Marchioro
Celso Morato de Carvalho	Everton Amancio -	
(Coordenador)	Embrapa/Cenargen	
Josemar Sena Batista	Francisco Filho Oliveira - UFS	

Murilo Marchioro

ENDEREÇO/ADDRESS: BIOLOGIA GERAL E EXPERIMENTAL, Centro de Ciências Biológicas e da Saúde - UFS, Av. Mal. Rondon s/n, Jardim Rosa Elze, S. Cristóvão, Se; CEP 49100-000; e-mail: jcvilar@bol.com.br ou cmorato@bol.com.br.

Aceita-se permuta/Exchange is accepted.

Biologia Geral e Experimental

Universidade Federal de Sergipe

On the eggs of Brasilian Podocnemis (Testudines, Podocnemididae)
P. E. Vanzolini

INTRODUCTION

Four species of Podocnemis occur in the rivers and lakes of Brasilian Amazonia: P. erythrocephala (Spix, 1824), P. expansa (Schweigger, 1812), P. sextuberculata Cornalia, 1849, and P. unifilis Troschel, 1848. There are two extra-limital species of the genus, P. lewyana A. Duméril, 1852, which occurs principally in the valley of Magdalena in Colombia, and P. vogli Müller, 1935, in the Orinoco drainage of Venezuela. Another species of the family, Peltocephalus dumerilianus (Schweigger, 1812) is also widespread in Amazonia.

Among the Brasilian species, P. erythrocephala is limited to the Rio Negro drainage, in itself a large area; the others have exceedingly broad distributions, essentially pan-Amazonian. They are all subject to heavy human predation, as the meat is a real delicacy and the eggs regionally much appreciated.

The degree of pressure is not the same on all forms. Formerly, P. expansa, "tartaruga" par excellence (the most prestigious animal in Amazonia), which is very visible during reproduction, as it lays in large bands on traditional beaches, and is a large animal, magnificent as food, used to be under heavy pressure. Besides the demand for the meat, the eggs were harvested as a source of fat, especially lamp oil. It is now protected in the traditional beaches, and the pressure has been relieved.
P. unifilis, "tracajá" is the second in size and esteem. The meat is very good and the eggs are eagerly sought, being widely credited with aphrodisiac virtues. Tracajá is not hard to catch with appropriate gear, but are protected during reproduction by laying individually on any type of ground, and thus frequently passing unnoticed. The nests are reasonably well disguised; trained dogs and horses are used to look for them.
P. sextuberculata, "pitiú" or "iaçá" (Vanzolini \& Gomes, 1979), and P. erythrocephala, "irapuca" (Mittermeier \& Wilson, 1974), are small species, that lay in small groups on sand beaches of any description They do not get special attention, but, on being stumbled upon, are not spared.
P. dumerilianus ("cabeçudo"), is the least frequent species and a secretive breeder, which lays individually in leaf litter and rotten wood. It is not particularly persecuted. I have never been able to obtain a clutch.

The Brasilian government has been in recent years making a genuine effort to protect the fauna in general, and especially those species whose preservation results in improved living conditions for local populations, including the persistence of traditional ways of life - in the case the use of turtles as a food supply of extended cultural significance. To these efforts at conservation I feel a certain lack of basic scientific information. It has long been the practice of this Museum in field excursions to supplement materials important to systematics (our primary business) with materials and data relevant to ecology, and especially to conservation. We have assembled some amount of information on turtles, and here I present data, thus far not available, on egg shape and volume in Podocnemis.

MATERIALS

I have used in this work 17 samples with a total 248 eggs, all catalogued in our collection. With the exception of a sample of unifilis eggs, mentioned below, all were collected by Museum field parties; the circumstances of collection were routinely recorded in the field, and are usually available, of course at different levels of detail and clarity.

In the context of the present investigation, i.e. shape and volume of eggs, two aspects are all-important: (i) have the eggs reached definitive size and shape and (ii) are they traceable to single clutches or to (commercial) pools of eggs. The latter are common in Amazonia, especially in the case of P. unifilis.

The samples used in the present work are:
P. erythrocephala. Two sets of 8 eggs each (MZUSP 2886, 2887) obtained by autopsy, at the Rio Cuieiras, which enters the Rio Negro from the left (east) some 60 km upriver from Manaus; collected on October 26-27, 1973. No further details in the field notes.
P. expansa. Three samples (MZUSP 2870, 2871
and 2893, respectively 5,4 and 6 eggs). The first two
samples were collected by myself on the well-known Taboleiro Leonardo, Rio Trombetas. This seasonal beach was brought into the literature by myself(Vanzolini, 1967); it is a traditional laying site, now very efficiently protected by the government. P. expansa and P. unifilis abound there and P. sextuberculata is not hard to find. My specimens were collected on October 8 and 9, 1965. The third sample, from the same locality, is not accompanied by field notes. (This sample was eventually proved not to belong to P. expansa, as will be discussed below).

The eggs I obtained at the Taboleiro had already been laid and buried but had been dug out by other females nesting in the same sites. The eggs of each sample were close together, and I do not doubt that they belonged to single clutches. Of course, having been laid, they were mature.
P. sextuberculata. I have 5 samples of this littleknown species: MZUSP 2872 (6 eggs) from autopsy of a female at Taboleiro Leonardo; MZUSP 2875 (18) and 2888 (30) from the Rio Solimões near the mouth of the Rio Juruá; 2878 (16) from Jacaré, a village on the left bank of the Rio Solimões; 12884 (12), from Lake Miuá, also on the Solimões. These Solimões samples are not accompanied by field notes, but it is certain that they were bought from egg pools - collected from nests and thus mature.
P. unifilis. There were 6 samples in the collection, all bought from pools offered for sale: MZUSP 2880 (18 eggs) and 2881 (6) from Coarí, on the right bank of
the Rio Solimões; 2890 (36) from Fonteboa, also on the right bank of the Solimões; 2874 (10), Taboleiro Leonardo, Rio Trombetas; 2891 (13) and 2892 (19), from Oriximiná, near the mouth of the Trombetas.

Thus with the exception of the eggs of P. erythrocephala, I am fairly secure that all our samples are constituted by mature eggs, having reached full size and shape. It may be added that all P. unifilis eggs have a perfect calcareous shell.

Well after this work was started I realized that direct measurement of the volume of at least some eggs was indispensable to constrain the results of geometrical methods. The few apparatus described in the literature for the direct measurement of turtle egg volume are difficult to build and to operate. I decided to measure volumes by filling empty egg shells with water and weighing them before and after (I thank Isaias Raw for the suggestion). The only species of Podocnemis amenable to this treatment is P. unifilis, the only one with a calcareous shell. I applied to IBAMA, the Brasilian fish and wildlife agency, for fresh eggs, and was promptly supplied with 23 eggs (MZUSP 4014) from Praia do Arí, Rio Araguaia.

Comment. I find it important to stress that this is an opportunistic investigation, not a properly designed one. There is justification, though. Some ground has been broken, and a first frame of reference is available

Map 1. 1, Rio Juruá (mouth at $02^{\circ} 37^{\prime} \mathrm{S}, 65^{\circ} 50^{\prime}$ W). 2, Fonteboa (0232,6602). 3, Jacaré (0224,6608). 4, Coarí (0406,6309). 5, Lago Miuá (0346 , 6213). 6, Rio Cuieiras (mouth at 0250,6030$)$. 7 , Taboleiro Leonardo $(0120,5645) .8$, Oriximiná $(0146,5551)$. 9. Praia do Arí $(1255,5031)$.
for further research, by necessity logistically difficult: vast areas and precise seasons are involved. Progress has been made in some methodological aspects, especially in the estimation of egg volume. Goes without saying that this type of work is very rewarding to the professional systematist, always preoccupied with his unrequitable indebtedness to the fauna, and with the hard relationships between collecting and conserving.

METHODS

The eggs of freshwater turtles vary around the shape of an ellipsoid of revolution, characterized by one major ("length") and one minor ("width") orthogonal diameters. How much individual eggs differ from an ellipsoid with the same diameters is estimated through a dimensionless parameter first proposed by Preston (1953) as the "bicone" of bird eggs, and later applied, very didactically, by Maritz \& Douglas (1994) to reptilian eggs.

In the present work the direct measurement of volume was done as follows: (i) the egg was blown empty, washed and dried; (ii) one of the holes bored to empty the egg was plugged with plasticine, and the egg weighed in a Pesola dynamometer; (iii) it was next filled with tap water and weighed again. The difference in grams between the two weights was taken as the volume of the egg in cubic centimeters.

As to the indirect (geometrical) estimates of egg volume, the procedure, following Maritz \& Douglas (1994) was:

1. The eggs were photographed next to a scale (Plate 1), the photographs enlarged a little over twice and xerox copies made of the enlargements. On the xerox copies were measured: (i) the major (L) and (ii) the minor (W) diameters, and (iii) the length of a secant (D) inclined 30° over the major diameter and passing through the interception of the diameters.

Plate 1. Podocnemis eggs.

1. P. erythrocephala 2886 (egg 6), Rio Cuieiras. L: 40 mm ; W: 24; D: 33; c (bicone): -0.p34; e (excentricity): $3.58 ; \mathrm{V}$ (2): $12 \mathrm{~cm}^{3}$.
2. P. expansa 2870 (1), Taboleiro Leonardo. L: 44 mm ; W: 43; D: 43; c: -0.086; e: 0.99; V (2): $43 \mathrm{~cm}^{3}$.
3. P. sextuberculata 2875 (16), Boca do Juruá. L: 42 mm ; W: 24; D: 36; c: 0.217 ; e: 3.76 ; V (2): $13 \mathrm{~cm}^{3}$.
4. P. unifilis 2890 (31), Fonteboa. L: 38 mm ; W: 27; D: 35; c: 0.117 ; e: 3.07 ; V (2): $15 \mathrm{~cm}^{3}$.

As will be discussed below, I tested the congruence of the measurements on photos by measuring the same eggs with calipers, in replicate. No differences were found, and so in what follows only the photo measurements are used, since this introduced no bias and especially since there is no direct very of measuring the secant.
2. The three measures (L, W and D) were applied to Maritz \& Douglas's formulas for the bicone c and the volume V (1) of the eggs:

$$
c=\frac{4 L^{2}}{3 D^{2}} *\left(\frac{L D}{W * \operatorname{SQR}\left(4 L^{2}-3 D^{2}\right)}-1\right)
$$

$$
V(1)=\pi / 6000 *\left(\frac{3 c^{2}+14 c+35}{35}\right) * L W^{2}
$$

The measurements are taken in millimeters and the resulting volumes in cubic centimeters.
3. Finally, the excentricity and volume were estimated by the formula for the ellipsoid of revolution.

$$
e=\left(S Q R\left(a^{2}-b^{2}\right)\right) / a
$$

where $\mathrm{a}=\mathrm{L} / 2$ and $\mathrm{b}=\mathrm{W} / 2$,

$$
V(2)=\pi / 6000 * L W^{2}
$$

The units are the same as before.

Statistical methods
Only very simple statistical methods were used, following Dixon \& Massey (1983), Zar (1999), Vanzolini (1993) and Siegel $(1956,1975)$.

In the text and tables the following conventions are followed:

N , specimens in sample
R , range of the variable
m , mean \pm its standard deviation
s, sample standard deviation
V , coefficient of variation
V (d), volume directly measured
V (1), volume estimated by the bicone $\mathrm{V}(2)$, volume estimated by the ellipsoid

Levels of significance are indicated as

$*$	significant at the 5% level,
$* *$	at the 1%,
$* * *$	at the 0.1%,

In the tables of Tukey's test, vertical lines to the left of the table encompass samples that do not differ at the 5% level.

Podocnemis unifilis

Of this species we have 7 samples, spanning some 1,100 km of Amazon; to it belongs the sample whose volumes were directly measured. Analysis of the tracajá data, especially in what concerns matters of method, may well serve as background to the other species.

MZUSP 4014

We start with the questions directly related to measurement. Sample 4014 comprises 23 eggs, of which all measurements could be reliably taken. Besides being measured on the photograph, each egg was submitted to two replicate measurements with calipers. Analysis of variance reveals ($\mathrm{F}=0.103 \mathrm{~ns}$) that, in the case of the major diameter (L), the mean of the photographic measurement (45.9 mm) does not differ significantly from those of the caliper replicates (46.1 and 46.2 mm). The data for the minor diameter (W) also closely agree. I thus consider valid the measurements taken on xerox copies of photographs.

The means of the 3 estimates of the volume (Tables 1 and 2) closely agree among themselves; in the analysis of variance $F=1.207$ ns.

This, however, refers to averages, not to indivi-
dual measurements. These must be addressed by regression analysis, egg by egg, taking as independent variables the two geometrical estimates and as dependent variable, to be predicted, the direct measurement. In neither case was the regression significant: in the estimate by the bicone $\mathrm{F}=$ 0.050 ns , in that by the ellipsoid $\mathrm{F}=0.129$ ns.

Complementarily, it must be noted that the mean of the bicone for this sample, 0.033 ± 0.0371, does not differ significantly from zero. This confirms the applicability of the ellipsoid formula, which is simple and depends on only two measurements easily taken and current in the literature. I rather like this conclusion.

Table 1. Sample 4014, P.unifilis. V(d), volume determined directly. $\mathrm{V}(1)$, by means of the bicone. V(2), by the ellipsoid.

Egg	$\mathrm{V}(\mathrm{d})$	$\mathrm{V}(1)$	$\mathrm{V}(2)$
1	22	20	19
2	22	19	22
3	22	18	20
5	22	22	22
8	19	20	19
9	21	22	21
10	20	23	23
11	21	22	23
12	21	21	21
13	20	23	21
14	22	22	22
15	22	21	20
16	22	22	21
17	21	22	22
18	22	20	21
19	23	22	22
20	23	22	21
21	23	21	21
23	23	21	20

Table 2. Sample 4014, P. unifilis, estimates of egg volume

Method	N	R	m	s	V
$\mathrm{V}(\mathrm{d})$	19	$19-23$	$21.7 \pm$	0.25	1.1
$\mathrm{~V}(1)$	19	$18-23$	21.1 ± 0.31	1.3	6.1
$\mathrm{~V}(2)$	19	$19-24$	$21.1 \pm$	0.28	1.2

Another way of arguing for the equivalence of the two geometrical methods of estimating the volume of P. unifilis eggs consists in regressing the two estimates for a number of samples. In the case of the 7 unifilis samples at hand, the coefficient of regression $b=1.051 \pm 0.0362$, not significantly different from 1, and the intercept $a=-$ 1.144 ± 1.2283, not significantly different from zero; that is to say, to convert one estimate into the other, multiply by one and add nothing. The relationship is practically perfect: the coefficient of determination $\mathrm{r}^{2}=0.9941$.

Volume. Table 3 shows the statistics of the distributions of frequencies of egg volume, $\mathrm{V}(2)$, of the 7 samples of P. unifilis. Analysis of variance affords $\mathrm{F}=$ 41.730 ***, which leads to Tukey's test - - its results are shown on Table 4. It becomes clear that it is not possible to adopt an average or a modal value of egg volume for the species. Even a geographical common denominator is not possible: the two Coarí samples differ significantly.

As a matter of caution I repeated the analysis for egg volume as determined by the bicone, V (1) (this was done for all species); the results were always in exact agreement, in all details.

Table 3. P. unifilis, statistics of the distributions of frequencies of $V(2)$.

Sample	N	R	m	s	V
4014 Araguaia	23	$19-24$	21.3 ± 0.25	1.2	5.6
2874 Leonardo	10	$15-19$	16.1 ± 0.44	1.4	8.7
2891 Oriximiná	13	$14-18$	14.9 ± 0.30	1.1	7.1
2892 Oriximiná	19	$15-19$	16.4 ± 0.27	1.2	7.2
2880 Coarí	18	$14-21$	15.9 ± 0.35	1.5	9.3
2881 Coarí	6	$10-12$	11.7 ± 0.32	0.7	6.3
2890 Fonteboa	35	$10-20$	14.9 ± 0.38	2.3	15.1

Table 4. P. unifilis, V(2), Tukey's test.

	Sample	m	N
2881	Coarí	11.7	6
2891	Oriximiná	14.9	13
2890	Fonteboa	14.9	35
\| 2880	Coarí	15.9	18
2874	Leonardo	16.1	10
2892	Oriximiná	16.4	19
4014	Araguaia	21.3	23

Parameters of shape. The statistics concerning the bicone are shown on Table 5. Although some values of the bicone differ significantly from zero, while others do not, analysis of variance showed homogeneity of the samples ($\mathrm{F}=1.877 \mathrm{~ns}$); it was thus possible to compute the last row of Table 5 , with average values of all samples. Thus, although the values of the volume of P. unifilis eggs vary widely between and within localities, shape, in what concerns departure from the ellipsoid, is constant over all.

The excentricity of the generating ellipsis is
analyzed in Tables 6 and 7. Analysis of variance shows heterogeneity ($\mathrm{F}=19.380$ ***), and Tukey's test shows a situation less simple than that for the bicone. Three groups can be discerned: (i) Leonardo, (ii) Araguaia and (iii) the remainder. The fact that Araguaia is in a solitary position might have been expected: these are eggs laid in the core of the cerrados, while all others were laid in Amazonian forest. However, the fact that Leonardo differs significantly from Oriximiná, on the same river, precludes acceptance of a geographical factor in Amazonia.

Table 5. P. unifilis, statistics of the distributions of frequencies of the bicone.

Sample	N	R	m	t	S
2874 Leonardo	10	- $0.086-0.226$	0.0971 ± 0.03659	2.654*	0.1157
2880 Coarí	18	- $0.131-0.173$	- 0.0168 ± 0.01984	0.848 ns	0.0842
2881 Coarí	6	- $0.248-0.194$	0.0018 ± 0.05920	0.031 ns	0.1450
2890 Fonteboa	35	- $0.724-0.467$	0.0161 ± 0.03000	0.537 ns	0.1775
2891 Oriximiná	13	- $0.017-0.238$	0.0765 ± 0.01812	4.223**	0.0653
2892 Oriximiná	19	- $0.077-0.214$	0.0566 ± 0.01814	3.120**	0.0791
4014 Araguaia	23	- $0.450-0.241$	0.0075 ± 0.03096	0.149 ns	0.0234
General	124	- $0.724-0.467$	0.0280 ± 0.01250	2.319*	0.1342

Table 6. P. unifilis, statistics of the distributions of frequencies of the excentricity.

Sample	N	R	m	s	V	
2874 Leonardo	10	$3.60-4.11$	$3.90+0.049$	0.16	4.0	
2880 Coari	18	$3.30-3.60$	$3.42+0.025$	0.11	3.2	
2881 Coari	6	$2.93-3.37$	$3.19+0.062$	0.15	4.7	
2890 Fonteboa	35	$1.93-3.59$	$3.12+0.061$	0.36	11.5	
2891 Oriximiná	13	$3.19-3.68$	$3.41+0.040$	0.15	4.3	
2892 Oriximiná	19	$3.19-3.60$	$3.37+0.028$	0.15	3.6	
4014 Araguaia	23	$3.21-4.06$	$3.61+0.053$	0.25	7.0	

Table 7. P. unifilis, excentricity, Tukey's test.

Sample	m	N	
2890	Fonteboa	3.12	35
2881	Coari	3.19	6
2892	Oriximiná	3.37	19
2891	Oriximiná	3.41	13
2880	Coari	3.42	18
4014	Araguaia	3.63	17
2874	Leonardo	3.90	10

Comment. The following conclusions seem reasonable:

1. The two methods (bicone and ellipsoid) of estimating volume are equivalent, in what concerns averages, and agree with direct measurement.
2. Individual (inter-sample), as against geographical variation seems to be the rule for volume and for excentricity; the bicone is homogeneous throughout the sample space.

Against this background we may place the other Brasilian species of the genus, for which we have the same measurements as for unifilis, except of course direct measurement of volume.

Podocnemis sextuberculata

This species ranks second in the number, 5, of available samples.

The congruence of the two methods of volume estimation was verified, as previously, both by comparison of means and by regression of $\mathrm{V}(1)$ on V (2). The comparisons of means yielded values of t
between 0.075 and 1.289 , not significant at any number of degrees of freedom. The coefficient of regression was 1.005 ± 0.0223, not significantly different from 1 ; the intercept was -0.252 ± 1.642, not significantly different from zero. Thus, in what follows, we'll deal again only with V (2), the volume estimated through the ellipsoid.

The data on volume are shown on Table 8. The analysis of variance indicates heterogeneity ($\mathrm{F}=52.319$ ***). Tukey's test (Table 9) shows extreme variability; two samples from Boca do Juruá are in agreement, but the third sample from the same locality disagrees with them.

Turning to the shape of the eggs, there is no variability in the bicone (Table 10; analysis of variance, $\mathrm{F}=0.925 \mathrm{~ns}$). Thus an over-all bicone was computed and can provisionally be used to characterize the species. With regard to the excentricity (Table 11), analysis of variance indicated heterogeneity ($\mathrm{F}=$ 13.922), although the multiple comparison tests failed to identify units; no over-all excentricity was computed.

TABLE 8. P. sextuberculata, statistics of the distributions of frequencies of $V(2)$.

Sample	N	R	m	s	V
2872 Leonardo	6	$16-23$	19.2 ± 0.89	2.2	11.7
2884 Lago Miuá	12	$18-27$	21.9 ± 0.65	2.3	10.4
2875 Boca Juruá	17	$11-14$	13.0 ± 0.16	0.7	5.1
2876 Boca Juruá	18	$10-20$	13.4 ± 0.51	2.2	16.2

TABLE 9. P. sextuberculata, V(2), Tukey's test.

Sample	m	N
2872 Leonardo	19.2	6
\| 2884 Lago Miuá	21.9	12
2875 Boca Juruá	13.0	17
2876 Boca Juruá	13.4	18
2888 Boca Juruá	16.9	30

TABLE 10. P. sextuberculata, statistics of the distributions of frequencies of the bicone.

Sample	N	R	m	t	s
2872 Leonardo	6	$-0.074-0.096$	-0.140 ± 0.04447	0.315 ns	0.1089
2884 Lago Miuá	12	$-0.115-0.092$	0.0253 ± 0.02601	0.973 ns	0.0901
2875 Boca Juruá	17	$-.0 .094-0.281$	0.0625 ± 0.02549	2.452^{*}	0.1051
2876 Boca Juruá	18	$-0.228-0.214$	0.0229 ± 0.03503	0.654 ns	0.1486
2888 Boca Juruá	30	$-0.122-0.217$	0.0626 ± 0.01712	$3.657 * *$	0.0937
2878 Jacaré	16	$-0.048-0.086$	0.0388 ± 0.01073	$3.616^{* *}$	0.0411
General					
			$-0.228-0.281$	0.0424 ± 0.01030	$4.113^{* * *}$

TABLE 11. P. sextuberculata, statistics of the distributions of frequencies of the excentricity.

Sample	N	R	m	s	V
2872 Leonardo	6	$3.19-3.71$	3.469 ± 0.0786	0.192	5.6
2884 Lago Miuá	12	$3.62-4.06$	3.854 ± 0.0381	0.132	3.4
2875 Boca Juruá	17	$3.39-3.93$	3.755 ± 0.0301	0.124	3.3
2876 Boca Juruá	18	$3.31-4.01$	3.777 ± 0.0411	0.175	4.6
2888 Boca Juruá	30	$3.32-4.06$	3.668 ± 0.0343	0.188	5.1
2878 Jacaré	16	$3.16-3.67$	3.446 ± 0.0288	0.115	3.3

Podocnemis expansa

Of this, the most neuralgic of Amazonian turtles, we had at the begining three samples (later reduced to two), from a single locality, Taboleiro Leonardo. It is actually a very important locality; it unfailingly receives every year a large number of breeding turtles (Padua \& Alho, 1982), which enjoy full protection. In fact, it is an ideal place to do research on Podocnemis reproduction, as three of the four Brasilian species are common there.

The relevant data are summarized on Table 12. It is immediately apparent that in all characters analyzed samples 2870 and 2871 tend to agree between themselves and to widely disagree with 2893. In fact, analysis of variance, followed by Tukey's test (see, for an example, Table 13) makes that very plain, and I consider sample 2893 as not belonging to P. expansa. That such a conclusion can be reached with sureness is to me one
the good points of this work
Of the two other species that occur in the area, sample 2893 fits very closely P. sextuberculata, both in volume and in the shape parameters; although I am morally certain that there is where it belongs, I am not using the sample in the present study.

In P. expansa again the two estimate of the volume were congruent, judging from the means, whose differences showed values of t below 1 . The regressions, however, gave conflicting results: for sample $2870 b=0.782 \pm 0.0574$ significantly different from 1. For sample $2871 \mathrm{~b}=1.183 \pm 0.0935$, not significantly different from 1.

Another point to be mentioned is that the two means for the bicone did not differ significantly between themselves, but one differed significantly from zero, while the other did not. All in all, data on this allimportant species are few and unsatisfactory.

TABLE 12. P. expansa, statistics of the distributions of frequencies of the volume and shape parameters.

Character	Sample	N	R	m	s	V
V(2)						
	2870	5	25. - 43	32.1 ± 2.88	6.4	20.0
	2871	4	27-31	28.7 ± 0.85	1.7	5.9
	$2870+2871$	9	25-43	30.6 ± 1.67	5.0	16.4
	"2893"	6	13-18	16.0 ± 0.78	1.9	12.0
bicone						
	2870	5	-0.193-0.0702	$-0.0231 \pm 0.04506 \mathrm{~ns}$	0.1008	
	2871	4	-.0.228-0.0660	$0.1561 \pm 0.04148 \mathrm{~ns}$	0.0830	
	$2870+2871$	9	-0.228-0.0702	$-0.0822 \pm 0.03771 \mathrm{~ns}$	0.0113	
	"2893"	6	-0.0677-0.188	$0.4130 \pm 0.04239^{* * *}$	0.1058	
excentricity						
	2870	5	0.494-1.905	1.343 ± 0.2729	0.610	45.4
	2871	4	1.444-2.348	1.784 ± 0.2164	0.433	24.3
	$2870+2871$	9	0.494-2.348	1.539 ± 0.1857	0.557	36.2
	"2893"	6	$2.945-3.703$	3.480 ± 0.1116	0.2730	7.9
V(1)						
	2870	5	25-39	31.7 ± 2.27	5.07	16.0
	2871	4	26-31	28.1 ± 1.01	2.02	7.2
	$2870+2871$	9	25-39	30.1 ± 1.41	4.24	14.1

TABLE 13. Podocnemis, Taboleiro Leonardo, V(2), Tukey's test.

Sample	m	N
unifilis 2874 2893	16.1	10
"expansa" 2872	17.2	6
sextuberculata	19.2	6
expansa 2871	28.7	4
expansa 2870	32.2	5

Podocnemis erythrocephala

Two samples, of 8 eggs each, are at hand. They are reportedly from two autopsied females; nothing else is on file.

The data are on Table 14. It is remarkable that the two samples differ significantly in volume and
excentricity but not in bicone; this does nor differ significantly from zero in either case.

The differences between two samples from the same locality, collected at the same time,must be due to different stages of maturation of the eggs; these data must be used with caution.

TABLE 14. Podocnemis erythrocephala, statistics of the distributions of frequencies of the volume and shape parameters.

Character	Sample	N	R	m	s	V	t
V(2)	2886	8	12-15	13.2 ± 0.28	0.8	6.1	4.772***
	2887	8	11-13	11.6 ± 0.19	0.5	4.6	
bicone	2886	8	$-0.164-0.127$	$-0.0236 \pm 0.03048 \mathrm{~ns}$	0.0862		0.713 ns
	2887	8	-0.056-0.138	$0.0045 \pm 0.02498 \mathrm{~ns}$	0.0707		
excentricity	2886	8	$3.49-3.76$	3.607 ± 0.0326	0.0922	2.6	6.986***
	2887	8	$3.27-3.39$	3.341 ± 0.0198	0.0559	1.7	
V(1)	2886	8	12-15	13.1 ± 0.29	0.8	6.4	
	2887	8	11-13	11.5 ± 0.17	0.5	4.2	4.545***

DISCUSSION

Volume

The analyses of individual species showed, for three out of the four, very large variation from sample to sample, even within the same locality (unifilis at Coarí, Table 4; sextuberculata at Boca do Juruá, Table 9; erythrocephala at the Rio Cuieiras, Table 14).

This might be attributed to differences in the degree of maturation of the clutches, but not in the case of P. unifilis, the calcareous shell of whose eggs, once laid, is not likely to grow. Additionally, eggs bought have usually been plundered from nests.

There is thus no expectation of profitable comparison among the species; none of them can be numerically described in summary. One solid fact, however, is that, where three species occur together (Leonardo, Table 13), the eggs of expansa are significantly larger. It is the largest species of the genus, adult females reaching $60+\mathrm{cm}$ carapace length (unifilis reaches close to 50 , the other two around 30).

A ranking of all samples available (Table 15) indicates that the three lesser species of the genus do not differ significantly in egg volume. This is indeed confirmed by Kruskal-Wallis's analysis of variance by
ranks (Siegel, 1975), which stops much short of significance ($\mathrm{H}=6.456 \mathrm{~ns}$).

Shape

Of the two geometrical parameters, I shall limit the discussion of egg shape to the excentricity of the generating ellipsis. The bicone is a much less intuitive character, and varies erratically in our materials.

A ranking of all samples (Table 16) shows that expansa has practically round eggs, and in this differs from the other three species (Kruskal-Wallis analysis of variance by ranks, $\mathrm{H}=8.164$ *), which do not differ among themselves (Kruskal-Wallis $\mathrm{H}=4.033 \mathrm{~ns}$).

Another way of looking at the shape of eggs is through the relationship between the two diameters, i.e., the regression of egg width on egg length. Table 17 shows the respective statistics.

Of the samples studied, only 4 showed significant regressions. Some of negative cases can be atributed to shortness of range of the variables (Vanzolini, 1993: 93). One way of circumventing this difficulty, although with some loss of information, is to combine samples from a locality. This led to
significant regressions only in two cases, P. does not differ significantly from zero: the eggs of P. erythrocephala and P. unifilis from Coari.

Of all regression analyses, the only meaningful one is that of P. expansa. The two individual regressions are significant and do not differ between themselves. The joint regression is higly significant (r^{2} $=0.9416$), which means that the relationship is important to the animal. The coefficient of regression (b) does not differ significantly from 1 ; the intercept
expansa are virtually spherical (as already demonstrated above).

Another comparison that can be made is between Coari (sum) and the Fonteboa P. unifilis both localities are on the Rio Solimões. The coefficients of regression differ significantly ($t=$ $2.332,56 \mathrm{df}$), which confirms the high heterogeneity of this species.

TABLE 15. Podocnemis, V(2) in all samples.

Sample	Locality	N	R	m
1. unifilis 2881	Coarí	11	$9-11$	10.3 ± 0.20
2. sextuberculata 2878	Boca Juruá	16	$11-12$	11.6 ± 0.11
3. erythrocephala 2887	Rio Cuieiras	8	$11-13$	11.6 ± 0.19
4. sextuberculata 2875	Boca Juruá	17	$11-14$	13.0 ± 0.16
5. erythrocephala 2886	Rio Cuieiras	8	$12-15$	13.2 ± 0.28
6. sextuberculata 2870	Boca Juruá	18	$10-20$	13.4 ± 0.51
7. unifilis 2890	Fonteboa	35	$10-20$	14.9 ± 0.38
8. unifilis 2891	Oriximiná	13	$14-18$	14.9 ± 0.30
9. unifilis 2880	Coarí	18	$14-21$	15.9 ± 0.35
10. unifilis 2874	Leonardo	10	$15-19$	16.1 ± 0.44
11. unifilis 2892	Oriximiná	19	$15-19$	16.4 ± 0.27
12. sextuberculata 2888	Boca Juruá	30	$12-21$	16.9 ± 0.48
13. sextuberculata 2872	Leonardo	6	$16-23$	19.2 ± 0.89
14. unifilis 4014	Araguaia	23	$19-24$	21.3 ± 0.25
15. sextuberculata 2884	Lago Miuá	12	$18-27$	21.9 ± 0.65
16. expansa 2871	Leonardo	4	$27-31$	28.7 ± 0.85
17. expansa 2870	Leonardo	5	$25-43$	32.1 ± 2.88

TABLE 16. Podocnemis, excentricity in all samples.

Sample	Locality	N	R			m
1. expansa 2870	Leonardo	5	0.49	- 1.91	1.34	± 0.273
2 expansa 2871	Leonardo	4	1.44	- 2.35	1.78	± 0.216
3. unifilis 2890	Fonteboa	35	1.93	- 3.59	3.12	± 0.061
4. unifilis 2881	Coarí	6	2.93	- 3.37	3.19	± 0.062
5. erythrocephala 2887	Rio Cuieiras	8	3.27	- 3.39	3.34	± 0.020
6. unifilis 2892	Oriximiná	19	3.19	- 3.60	3.37	± 0.028
7. unifilis 2891	Oriximiná	13	3.19	- 3.68	3.41	± 0.040
8. unifilis 2880	Coarí	18	3.30	- 3.60	3.42	± 0.025
9. sextuberculata 2878	Boca Juruá	16	3.16	- 3.45	3.45	± 0.029
10. sextuberculata 2872	Leonardo	6	3.19	- 3.71	3.47	± 0.079
11. unifilis 4014	Araguaia	23	3.21	- 4.06	3.61	± 0.053
12. erythrocephala 2886	Rio Cuieiras	8	3.49	- 3.76	3.61	± 0.033
13. sextuberculata 2888	Boca Juruá	30	3.31	- 4.06	3.67	± 0.034
14. sextuberculata 2875	Boca Juruá	17	3.39	- 3.93	3.76	± 0.030
15 sextuberculata 2876	Boca Juruá	18	3.31	+4.01	3.78	± 0.041
16. sextuberculata 2884	Lago Miuá	12	3.62	- 4.06	3.85	± 0.038
17. unifilis 2874	Leonardo	10	3.60	- 4.11	3.90	± 0.049

TABLE 17. Statistics of the regression of egg width on egg length.

	N	R (x)	$\mathrm{R}(\mathrm{y})$	b	a	F	r^{2}
erythrocephala							
2886 Rio Cueieiras	8	40-42	24-28	0		0	
2887 Rio Cueieiras	8	37-39	23-25	0.452 ± 0.3414		1.750 ns	
Sum expansa	16	37-42	23-28	0.221 ± 0.0866	$15.98 \pm 0.571^{* * *}$	6.487*	0.3166
2870 Leonardo	5	38-43	33-42	1.474 ± 0.4133	$-22.63 \pm 2.996^{* * *}$	12.712*	0.8091
2871 Leonardo	4	39-51	36-47	0.911 ± 0.0093	$0.45 \pm 2.534 \mathrm{~ns}$	9159.268***	0.9998
Sum sextuberculata	9	38-51	33-47	0.970 ± 0.0913	$-2.24 \pm 1.800 \mathrm{~ns}$	$112.818^{* * *}$	0.9416
2872 Leonardo	6	40-45	28-31	0.256 ± 0.2935		0.763 ns	
2875 Boca Juruá	18	39-45	23-28	0.292 ± 0.1752		2.771 ns	
2876 Boca Juruá	18	39-46	22-29	0.278 ± 0.2594		1.147 ns	
2878 Boca Juruá	16	36-41	23-24	0.032 ± 0.0576		0.302 ns	
2888 Boca Juruá	31	39-49	24-29	0.411 ± 0.0927	$\begin{array}{r} 9.09 \pm \\ 0.681^{* * *} \end{array}$	19.668***	0.4041
Sum Boca Juruá unifilis	83	36-49	22-29	0.446 ± 0.0677	$6.50 \pm 0.465^{* * *}$	48.918***	0.3765
2874 Leonardo	10	42-47	25-27	-0.049 ± 0.2469		0.039 ns	
2880 Coarí	18	40-44	26-30	0.447 ± 0.2135		4.393 ns	
2881 Coarí	6	34-37	23-24	0.167 ± 0.1667		1.000 ns	
Sum Coarí	24	34-44	23-30	0.572 ± 0.0755	$3.45 \pm 0.591^{* * *}$	57.356***	0.7228
2890 Fonteboa	36	30-49	24-33	0.302 ± 0.0682	$15.44 \pm 0.509^{* * *}$	19.621***	0.3659
2891 Oriximiná	13	39-43	25-28	0.040 ± 0.1845		0.047 ns	
2892 Orixminá	19	39-43	26-29	0.203 ± 0.1915		1.127 ns	
Sum Orixominá	32	39-43	25-29	0.243 ± 0.1445		2.834 ns	
4014 Araguaia	21	43-49	29-33	0.244 ± 0.1135		2.263 ns	

Identification of eggs

The eggs of P. unifilis, elongate and with a calcareous shell, and of P. expansa, spherical, are unmistakable. It is not possible at present to discriminate biometrically between erythrocephala and sextuberculata eggs.

CONCLUSION

This avowedly opportunistic and preliminary study permits nevertheless some conclusions capable of orienting continuation and amplification of research.

It is clear that much variability exists, and that tracking its cause and circumstances is a first design. This depends essentially on a scheme of sampling. Several areas must be sampled, with replication, and with the collection of as ample a repertoire of data as possible. Each sample must be unequivocally related to one female, herself duly measured and weighed, or at least to one nest. It will be important to note clutch size. In all forms except P. unifilis, autopsy should be avoided, as in species with soft-shelled eggs there is no way, besides readiness to lay, of ascertaining maturity of the eggs.

The present data on P. unifilis and P. sextuberculata, although not yet sufficient, are somewhat better than those on expansa and erythrocephala, which should deserve priority. There should be no problem in getting expansa eggs. The traditional beaches are well known and protected, the numbers of females that frequent them are large, it is possible to follow closely oviposition, and the collection of moderate samples of eggs will not harm the demography. On the contrary, nothing is known about erythrocephala; all remains to be done. It is not rare where it occurs (Mittermeier \& Wilson, 1974) and with the help of local people it seems there would be no problem.

In the case of sextuberculata and unifilis, it will take some field work to locate a suitable number of properly distributed nests; this may take time and travel, but not more than that.

As to methods, it seems reasonable to conclude that the estimation of volume by means of the ellipsoid is satisfactory, and that excentricity is a good index of
shape. It would be advisable, however, to execute more direct determinations of the volume of P. unifilis eggs.

All in all, a reasonably thorough sampling scheme should afford a deeper look into the reproductive biology of these most attractive animals.

ACKNOWLEDGMENTS

This work would not have been possible (it was in fact stalled for quite some time) without a sample of frozen P. unifilis eggs, which permitted direct measurement of the volume. For this I am indebted to IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) and especially to dr. Yeda Soares Lucena Bataus, of the Goiás office.This work was not funded by any granting agency. W. Ronald Heyer and C.W. Myers helpfully criticized the manuscript.

REFERENCES

Dixon, W.J. \& F.J. Massey jr., 1983. Introduction to statistical analysis. Fourth edition. New York etc: MacGraw-Hill. $\mathrm{xv}+678 \mathrm{p}$.
Maritz, M.F. \& R.M. Douglas, 1994. Shape quantization and the estimation of volume and surface area of reptile eggs. J. Herp. 28 (3): 281-291.
Mittermeier, R.A. \& R.A. Wilson, 1974. Redescrition of Podocnemis erythrocephala (Spix, 1824), an Amazonian pelomedusid turtle. Papéis Avulsos Zool., S.Paulo, 28 (8): 147-162.

Padua, L.F.M. \& C.J.R. Alho, 1982. Comportamento de nidificação de tartaruga-da-Amazônia Podocnemis expansa (Testudinata, Pelomedusidae) na Reserva Florestal do Rio Trombetas, Pará. Brasil Florestal 12 (49): 33-44.
Preston, F.W., 1953. The shape of birds' eggs. Auk 70: 150182.

Siegel, S., 1956. Nonparametric statistics for the behavioral sciences. New York etc: McGraw-Hill. xvii + 312 p.
Siegel, S., 1975. Estatística não-paramétrica para as ciências do comportamento. [Brasilian translation]. São Paulo: McGraw-Hill do Brasil. 350 p.
Vanzolini, P.E., 1967. Notes on the nesting behavior of Podocnemis expansa in the Amazon valley (Testudines, Pelomedusidae). Papéis Avulsos Zool., S. Paulo, 20 (17). 191-215.
Vanzolini, P.E., 1977. A brief biometrical note on the reproductive ecology of some South American Podocnemis (Testudines, Pelomedusidae). Papéis Avulsos Zool., S. Paulo, 31 (5): 79-102.
Vanzolini, P.E., 1993. Métodos estatísticos elementares em sistemática zoológica. S. Paulo: Editora Hucitec. 130 p.
Vanzolini, P.E. \& N. Gomes, 1979. A note on the biometry and reproduction of Podocnemis sextuberculata (Testudinata, Pelomedusidae). Papéis Avulsos Zool., S. Paulo, 32 (23): 277-290.
Zar, J.H., 1999. Biostatistical analysis. Fourth ed. Upper Saddle River, N.J.: Prentice Hall. $x i+661+212+11+20+23$ p.

INSTRUÇÕES AOS AUTORES: Biologia Geral e Experimental é uma publicação semestral da Universidade Federal de Sergipe, publica manuscritos originais de todas as áreas da biologia geral e experimental. Os manuscritos devem ser enviados em três vias datilografados em espaço duplo. A primeira página deve conter o título, nome(s) do(s) autor(es), instituição, número de figuras e tabelas, palavras-chave (até 5), título abreviado para cabeça de páginas, nome e endereço do autor para correspondência. A segunda página deve conter Resumo e Abstract. As páginas seguintes devem conter os itens Introdução, Material e Métodos, Resultados, Discussão e Agradecimentos nesta ordenação quando possível. Notas de rodapé deverão ser evitadas. Nas citações devem ser utilizadas letras minúsculas sem destaque. As Referências deverão conter sobrenonome e iniciais dos autores citados, ano, título, nome da revista abreviado e em destaque, volume, número, primeira e última páginas. Exemplo: Fisher, R.A. \& B.Balmukand, 1928. The estimation of linkage from the offspring of selfed heterozygotes. J. Genet. 20:79-92. Citações de artigos de livros deverão ser mais completas. Exemplo: Elliot, W.B. 1978. Chemestry and immunology of repetilian venoms, p. 163-436 In Biology of the Reptilia (C.Gans \& K.A.Gans, Eds.). Academic Press, London and New York 782 p. Tabelas, Gráficos e Figuras devem ser apresentadas separadamente, com indicações no texto onde deverão ser inseridos. A Redação da revista se encarregará da primeira revisão das provas, a revisão final será responsabilidade dos autores.

INSTRUCTIONS TO AUTHORS: Biologia Geral e Experimental is a bi-annual publication of the Universidade Federal de Sergipe, meant to publish original manuscripts in all areas of the experimental and general biology. Manuscripts should be sent in three typewritten double spaced copies. The first page should contain the title, name(s) of the author(s), number of figures and tables, key words (up to 5), abbreviated title for running heads, name and address of the author for correspondence. The second page should contain the Abstract. The following pages should contain the items Introduction, Material and Methods, Results, Discussion and Acknowledgements in that order when possible. Footnotes should be avoided. Citations should be in low case. References should first contain the last name followed by the initials of the authors, title, abbreviated name of the journal, volume, number, first and last pages. Example: Fisher, R.A. \& B.Balmukand, 1928. The estimation of linkage from the offspring of selfed heterozygotes. J. Genet. 20:79-92. Citations of articles in books should be complete. Example: Elliot, W.B. 1978. Chemistry and immunology of repetilian venoms, p. 163-436 In Biology of the Reptilia (C.Gans \& K.A.Gans, Eds.). Academic Press, London and New York 782 p. Tables, Graphs and Figures should be presented separately, with indications in the text for inclusion. The staff of the journal (Redação) will make the first revision of the drafts; the final revision will be the authors' responsibility.

UNIVERSIDADE FEDERAL DE SERGIPE
AV. MARECHAL RONDON S/N - JARDIM ROSA ELZE
SÃO CRISTÓVÃO - SE. 49100-000

Biologia Geral e Experimental

Universidade Federal de Sergipe

On some aspects of the reproductive biology of Brasilian Crotalus (Serpentes, Viperidae)
P. E. Vanzolini ${ }^{1}$

Myriam E. V. Calleffo ${ }^{2}$
1.Museu de Zoologia, Universidade de São Paulo.
2.Instituto Butantan, Laboratório de Herpetologia.

INTRODUCTION

As part of an ongoing investigation of the geographical differentiation of Brasilian rattlesnakes, we have studied, with basis on ten broods and on 28 general samples from the same geographical area as the broods, some aspects of their reproductive biology that can be addressed with museum materials. We believe that comparison between broods and adult samples contributes to an understanding of the dynamics of some processes, such as sexual dimorphism. Otherwise, contrasts within broods are highly informative, since they are free from a number of confounding factors, especially ecology and age.

We altogether lack ecological and genetical information on South American Crotalus. Our effort is thus perforce limited to the presentation of data, some of them the first on a South American species of the genus, and to a preliminary statistical analysis, looking for pattern and relating to the literature.

MATERIALS

It will be noticed that we are using no specific or subspecific names for our materials, referring only to the genus. In fact, the systematics of BrasilianCrotalus is probably in a worse shape than that of any snake genus on the continent. The latest review (Hoge, 1966) consists of a series of flat statements and indefinite maps about ten supposed subspecies, without discussion of hard morphological data or of actual distributions. There is no doubt that several forms are involved; even some of the color pattern morphs recognized as taxa by Hoge will probably turn out to be valid, but the system, as it stands, is inconsistent and
unappliable. In fact, the research of which the present article is a preliminary part was designed to attempt a better understanding of the structure of the genus in Brasil. In the present context we will have our samples identified solely by geographical provenance.

This study is based on ten broods of Crotalus, all in the collection of Instituto Butantan, and on 25 single-locality general purpose samples from the same and from other collections.

The broods were not collected for the purpose; they are part of the Institute's systematic collection, assembled along many years. However, for all broods but one the mother has been preserved. We thus know that they were born in the Institute, or at least in the wooden boxes in which the snakes were shipped (mostly by rail) from the local of collection, usually agricultural or cattle ranches, to the Institute. We have no doubt that the lots recorded as broods are really that, and the localities assigned are of course the mothers'.

What we have no means of ascertaining is whether there has been selection of the specimens to be preserved. Since in the ten broods (134 specimens) there is only one defective individual, we presume that some sort of selection (at least discard of abnormal specimens) was exercised. Malformed individuals are very frequent in rattlesnake broods (Klauber, 1956: 199; Langlada, 1975); their absence in the materials at hand can only mean that somebody has been tidy. In two cases, however (Broods 3 and 8), there is accessory evidence, from the relationship between female length and brood size (below) that, in one case, only part of a brood was preserved and, in an other, the brood is composite. We do not expect however, this practice to have introduced any bias in the analyses in which they were used.

Two series not recorded as broods, from Floraí

Map 1. Localities of the broods and general samples used in this work. 1, São Luís. 2, Afranio. 3, Petrolina. 4, Ipirá. 5, Rui Barbosa. 6, Tapurah. 7, Xingu. 8, Salvador. 9, Guanambí. 10, Urandí. 11, Vitória da Conquista. 12, Brasília. 13, Goiânia. 14, Rio Verde. 15, Vazante. 16, Goiandira; Ouvidor. 17, Transvaal. 18, Ilha Solteira. 19, Campo Grande. 20, Colina. 21, Araçatuba. 22, Cravinhos. 23, Toriba. 24, Poços de Caldas. 25, Vargem Grande. 26, Valença. 27, Frutal do Campo. 28, Paranavaí. 29, Floraí; Maringá. 30, Arapongas. 31, Ivaiporã. 32, Guarapuava. 33, Curitiba. 34, Foz do Iguaçu.

5, Frutal do Campo, S. Paulo (2251, 5031), 5 MM, mother IB 1593.
7 FF, mother IB, 33971.
6, Vargem Grande, São Paulo $(2245,4649), 5 \mathrm{MM}$, The samples (Map 1) we are calling "general"are:
4 FF , mother IB 1504.
7, Poços de Caldas, Minas Gerais (2148, 4634), - Afranio, state of Pernambuco (0831, 4100), 14 MM,
9 MM, FF, mother IB 26062 21 FF

8, Rui Barbosa, Bahia $(1218,4027), 4 \mathrm{MM}, 3$ FF, mother IB 26062.

9, Ipirá, Bahia (1210, 3944), $12 \mathrm{MM}, 10 \mathrm{FF}$, mother not preserved.

10, Urandí, Bahia (1446, 4240), 9 MM, 8 FF,

- Apucarana, Paraná (2333, 5129), 7 MM, 7 FF (MHNCI)
- Araçatuba, São Paulo $(2112,5129), 10 \mathrm{MM}, 7$ FF
- Brasília, Distrito Federal (1546, 4748), 18 MM, 19 FF
- Campo Grande, Mato Grosso do Sul $(2027,5438), 9$

MM, 11 FF
sensible limits (the literature abounds in pointless measurements to the tenth of a millimeter). The computation of regression with error in both variables is seldom found in textbooks, but is relatively easy to perform (Silva-Leme, 1959). Differences between the results of this method and those of plain least squares usually reside in the third or fourth decimal places. Thus we stick to traditional least squares.

The following conventions have been adopted with respect to the tables. In tables that include statistics of distributions of frequencies,

N , individuals in sample
R , range of the variable
m, mean \pm its standard deviation
s, sample standard deviation
V , coefficient of variation
t , Student's, for the difference between the male and female means.

In tables of regression data,

N , individuals in sample
$R(x), R(y)$, ranges respectively of the independent and of the dependent variables b, regression coefficient (slope) \pm its standard deviation
a, intercept \pm its standard deviation
F, Fisher's, for the significance of the regression
r^{2}, coefficient of determination
db , level of significance (t test) of the difference between male and female values of the slope da, ditto for the intercept.

In all cases,
ns, not significant at the 5% level
*, significant at the 5\% level
**, at the 1% level
***, at the 0.1 level.
For sex: M, male and F, female

Comparisons

Crotalus is obviously a Nearctic genus that invaded South America in the Pliocene (Vanzolini \& Heyer, 1985). It is strongly differentiated in North America, much less so in South America: at least the number of sympatric species is smaller in the south. It seems obvious that there is great interest in comparing natural history data from the two continents - and a pity that not much has been done in Central America.

Our starting point in comparing northern and southern Crotalus is Klauber's (1956) monumental work. He not only assembled a phenomenal amount of information, but presented it in a form that permits subsequent statistical treatment of a type not feasible in his day.

We have conserved Klauber's taxonomic scheme. Very few changes have been proposed since, to us not always convincingly.

For the more recent literature we have proceeded in the same manner, re-analyzing the data when necessary and possible.

Otherwise, there is great interest in comparing data on BrasilianCrotalus with data on other Neotropical viviparous Viperidae, i.e., the species of Bothrops (sensu lato: we do not adopt Burger's (1971) partition of the genus). These comparisons offer an opening for the evaluation of the roles of phylogeny (North American Crotalus) and ecology (Bothrops) in the causation of

Table 2. Crotalus, sex ratio, general samples.
Table 3. Crotalus, sex ratio, data from Klauber (1936).

Sample	MM	FF	sum	ratio	X^{2}
Afranio	14	21	35	0.400	0.700
Apucarana	7	7	14	0.500	0.000
Araçatuba	10	11	21	0.476	0.024
Brasilia	18	19	37	0.486	0.014
Campo Grande	9	11	20	0.450	0.100
Colina	8	13	21	0.381	0.595
Curitiba	6	5	11	0.545	0.045
Foz do Iguaçu	9	5	14	0.643	0.571
Goiandira	9	5	14	0.643	0.571
Goiânia	7	4	11	0.636	0.409
Guanambi	11	11	22	0.500	0.000
Ilha Solteira	25	39	64	0.391	1.531
Itaipu	6	5	11	0.545	0.045
Ivaiporã	8	6	14	0.571	0.143
Ouvidor	5	8	13	0.385	0.346
Petrolina	11	21	32	0.344	1.563
Rio Verde	9	9	18	0.500	0.000
Salvador	16	22	38	0.421	0.474
São Luís	12	7	19	0.632	0.658
Tapurah	5	5	10	0.500	0.000
Toriba	13	9	22	0.591	0.364
Transvaal	6	6	12	0.500	0.000
Valença	5	5	10	0.500	0.000
Vitória da	9	14	23	0.391	0.543
Conquista					
Xingu	5	7	12	0.417	0.167
	274	293	567	0.483	0.318
				$S X^{2}$	10.691

made leads to a suspicion that a misprint has occurred. However, two other authors have data on C. horridus, Brown (1992), northeastern New York state (487 males, 523 females), and Berish (1998), Florida (74 males, 41 females). The three sets of data are incompatible (chi square $\left.18.650^{* * *}\right)$. Comparing Brown's to Berish's data (Klauber's is a mixed sample, but theirs are geographically homogeneous), chi square is again significant (10.745 **). Martin (1992) found on the Appalachian Mountains an excess of females: 258:527, ratio 0.309 , chi square $60.925^{* * *}$. It is thus obvious that there is geographic differentiation in the sex ratio

Sample	MM	FF	sum	ratio	X^{2}
durissus	59	54	115	0.522	0.111
basiliscus	48	44	92	0.522	0.087
enyo	39	22	61	0.639	2.369
molossus	159	120	279	0.570	2.726
adamanteus	26	16	42	0.619	1.190
atrox	399	284	683	0.584	9.682
tortugensis	21	7	28	0.750	3.500
lucasensis	198	149	347	0.571	3.460
ruber	154	118	272	0.566	2.382
exsul	17	4	21	0.810	4.024
scutulatus	234	143	377	0.621	10.983
confluentus	1105	964	2069	0.534	4.804
nuntius	122	63	185	0.659	9.408
abyssus	18	12	30	0.600	0.600
lutosus	229	157	386	0.593	6.715
concolor	13	9	22	0.591	0.364
oreganus	795	594	1389	0.572	14.543
mitchellii	57	29	86	0.663	4.558
pyrrhus	133	60	193	0.689	13.806
stephensi	42	23	65	0.646	2.777
tigris	26	15	41	0.634	1.476
cerastes	180	140	320	0.563	2.500
polystictus	9	8	17	0.529	0.029
horridus	66	106	172	0.384	4.651
lepidus	90	71	161	0.559	1.121
triseriatus	101	80	181	0.558	1.218
willardi	15	13	28	0.536	0.071
ravus	10	1	11	0.909	3.682
miliarius	116	104	220	0.527	0.327
catenatus	57	55	112	0.509	0.018
	4538	3465	8003	0.567	71.931
				$5 X^{2}$	113.182

of C. horridus and that the species should not be treated as a unit.

Eliminated C. horridus from Klauber's list, the 29 remaining forms can thus be analyzed: (i) in all samples males prevail (ratios 0.51 to 0.91); (ii) however, ratios deviating significantly (at the 1% level) from evenness are only 4, atrox, s. scutulatus, viridis oreganus and mitchelli pyrrhus, all represented by large samples.

Fitch \& Glading (1947) observed, in C. viridis oreganus from central California, a strongly male-biased sex ratio: 294:195, chi square 10.021 . Their data agree with Klauber's (chi square 1.233). Julian (1951) has
agreement with Julian's (1951) ratio of 0.588 for the period 1939-1949 (Table 4).

Diller \& Wallace (1984), working with Crotalus viridis oreganus in northern Idaho, observed a sex ratio of 0.380 , but conceded that the sample was biased (nature of the bias not disclosed). The ratio in a sample stated to be unbiased was 0.461 , not significantly different from evenness. In four small clutches (19 specimens) the ratio was 0.579 , also not significantly different from 0.500 . This is in disagreement with Klauber.

Seigel (1986) found in Sistrurus catenatus from Missouri a sex ratio of 0.529 (45 males, 40 females), not significantly different from 0.5.

Macartney et al. (1990) have data on C. viridis oreganus in British Columbia. Sex ratios of broods and of snakes one and two years old varied from 0.342 to 0.588 , neither the individual groups nor the aggregate differing significantly from 0.500 .

Brown's (1992) data for C. horridus have been discussed above. He found a sex ratio of 0.642 , not significantly different from evenness. He also states to have observed seasonal variation. We recalculated his data and came up with a chi square of 5.950, ca. 0.40 for 6 degrees of freedom; there seems to be no seasonal variation.

Brown \& Lillywhite (1992) found in two broods of C. cerastes from the Mojave Desert respectively 3:3 and 4: 5 males: females; the ratios obviously do not differ from 0.5 , but the samples are very small.

Fitch \& Pisani (1993) have data onCrotalus atrox collected during five rattlesnake roundups in different parts of Oklahoma. They present only aggregate data, which result in a ratio of 0.594 (371 males, 254 females), significantly different from 0.5 . We find no geographical
difference between northern and southern Oklahoma, and the sex ratio fully agrees with Klauber's for the same species: chi square is 0.119 for one degree of freedom.

From Fig. 1 in Aldridge \& Brown (1995) it is possible to read the frequencies of males and females of Crotalus horridus from New York State: 53:23, a ratio of 0.697 , significantly different from evenness at the 5% level $($ chi square $=5.921 *)$.

Beaupre et al (1998) found, for the same C. atrox in central Arizona, 116 males and 65 females, a ratio of 0.641 , significantly different from 0.500 .

Beaupre (1995) has incidental data on the sex ratio of C. lepidus in the Big Bend of the Rio Grande: 35 males and 21 females, from two localities (homogeneous among themselves) afford a ratio of 0.625 , not significantly different from $0.5($ chi square $=1.750)$.

A recent paper (Berish, 1998, cited above) throws additional light on the problem. She gathered data, from the skin trade, on Floridian Crotalus adamanteus and C. horridus, respectively 598 and 115 specimens, spanning one year and one week: really remarkable data. She lists individually 8 simultaneous samples of each species, spaced in time (data reworked as our Table 6). Sex ratio showed significant temporal variation within the duration of the study. In adamanteus, males predominated in the aggregate: there were 361 males and 237 females, for a chi square of 12.856 (our computation), significant at the 0.1% level. Two samples only, October 7 of the first, and October 14 of the next year, are responsible for the deviation. Removing these samples lowers the ratio to evenness. In horridus, males also predominated (ratio 0.640), but there was no significant variation in time. On Graph 1 we plot the sex ratios against their respective dates. It is unmistakable

Table 6. Sex ratio, Florida rattlesnakes (Berish, 1998).

Sample	MM	FF	sum	ratio	X^{2}
adamanteus					
7.x	43	11	54	0.796	$9.481 * *$
31.x	39	33	72	0.542	0.250 ns
11.xii	33	29	62	0.532	0.129 ns
20.iv	38	31	69	0.551	0.355 ns
9.vi	49	46	95	0.516	0.047 ns
7.vii	15	17	32	0.469	0.063 ns
10.viii	33	18	51	0.647	2.206 ns
14.x	109	54	163	0.669	$9.279 * *$
			horridus		
7.x	5	4	9	0.556	0.056 ns
31.x	16	7	23	0.696	1.761 ns
11.xii	11	6	17	0.647	0.735 ns
20.iv	3	2	5	0.600	0.100 ns
9.vi	5	5	10	0.500	0.000 ns
7.vii	4	4	8	0.500	0.000 ns
10.viii	11	6	17	0.647	0.735 ns
14.x	19	7	26	0.731	2.769 ns

Table 7. Bothrops, sex ratios, data from the literature.

Species	Area	M:F	ratio	X^{2}	Source
atrox	Costa Rica	$8: 3$	0.727	1.136 ns	Hirth, 1964
	Iquitos, Perú	$22: 10$	0.688	2.250 ns	Hoge \& Federsoni, 1978
nummifer young	Costa Rica	$31: 39$	0.443	0.417 ns	Solórzano, 1988
adult	Costa Rica	$41: 48$	0.461	0.275 ns	Solórzano, 1988
asper	E Costa Rica	$98: 80$	0.551	0.910 ns	Solórzano \& Cerdas, 1989
	W Costa Rica	$60: 67$	0.472	0.192 ns	Solórzano \& Cerdas, 1989
godmani	Costa Rica	$320: 337$	0.487	0.220 ns	Campbell \& Solórzano, 1992
yucatanicus	S México	$40: 79$	0.336	$6.391 *$	McCoy \& Censky, 1992
moojeni	Goiás, Brasil	$26: 50$	0.342	3.789 ns	Leloup, 1975
jararaca young	S. Paulo, Brasil	$11: 20$	0.355	1.306 ns	Sazima, 1992
adult	S. Paulo, Brasil	$25: 28$	0.472	0.085 ns	Sazima, 1992

Graph 1. Crotalus from Florida, sex ratio against time (data from Berish, 1998).

Table 8. Crotalus, broods, statistics of the distributions of frequencies of body length.

	N	R	m	S	V	t
Brood 1 M	4	287-312	303.0 ± 5.52	11.0	3.7	
F	4	300-316	308.0 ± 4.08	8.2	2.7	
3 M	11	320-335	329.7 ± 1.65	5.5	1.7	
F	13	300-357	339.5 ± 4.80	16.6	4.9	
4 M	4	292-324	313.3 ± 7.43	14.9	4.7	
F	7	303-317	306.9 ± 1.91	5.0	1.6	
5 M	5	303-314	307.4 ± 2.11	4.7	1.5	
F	7	302-321	312.6 ± 2.32	6.1	2.0	
6 M	5	272-300	290.8 ± 5.05	11.3	3.9	
F	4	288-310	301.8 ± 4.97	9.9	3.3	
7 M	9	292-303	297.3 ± 1.24	3.7	1.3	
F	5	296-303	298.4 ± 1.36	3.0	1.0	0.548 ns
8 M	4	310-345	329.3 ± 8.96	17.9	5.4	
F	3	321-325	323.7 ± 1.33	2.3	0.7	
9 M	12	323-374	343.9 ± 4.03	14.0	4.1	
F	10	333-387	350.2 ± 4.44	14.0	4.0	1.048 ns
10 M	9	284-298	290.7 ± 1.76	5.3	1.8	
						2.137 *
F	8	290-313	297.8 ± 2.91	8.2	2.8	
Floraí 2						
M	21	339-395	360.8 ± 2.93	13.4	3.7	
F	11	301-390	365.0 ± 6.77	22.4	0.2	0.671 ns
Guarupava						
M	7	301-325	314.4 ± 3.60	9.5	3.0	
F	10	309-350	324.7 ± 4.40	14.2	4.4	1.661 ns

Table 9. Crotalus, general samples, sexual differences in body length, Mann-Whitney test.

Sample		N	R	U
Afranio	M	14	$337-1530$	Z
Apucarana	F	21	$905-1296$	0.067 ns
	M	7	$564-1004$	
Araçatuba	F	7	$481-1199$	20 ns
	M	10	$250-1193$	
Brasília	F	12	$322-1216$	1.220 ns
	M	19	$320-1115$	

Table 9. Continued

Sample		N	R	U	z
Toriba	M	13	$402-1030$		
	F	15	$504-1043$		0.115 ns
Transvaal	M	7	$319-1274$		
	F	6	$531-1019$	ns	
Valença	M	5	$470-725$		
	F	5	$516-1066$		
Vazante	M	27	$256-1443$		0.990 ns
	F	14	$247-1187$		
Vitória da Conquista	M	8	$205-1175$		2.252 ns
	F	14	$368-1103$		
	M	5	$311-1071$		

Table 10. Crotalus, broods, statistics of the distributions of frequencies of total length.

		N	R	m	S	V	t
Brood 1	M	4	313-340	329.0 ± 5.87	11.7	3.6	2.119 ns
	F	4	322-340	330.8 ± 5.06	10.1	3.1	
Brood 3	M	10	353-370	362.5 ± 1.91	6.0	1.7	$10.735^{* * *}$
	F	13	344-387	369.1 ± 3.47	12.5	3.4	
Brood 4	M	4	317-354	342.3 ± 8.84	17.7	5.2	1.801 ns
	F	7	324-341	329.4 ± 2.3	6.1	1.9	
Brood 5	M	5	330-336	332.2 ± 1.2	2.7	0.8	2.091 ns
	F	7	324-343	334.3 ± 2.32	6.1	1.8	
Brood 6	M	5	301-359	236.0 ± 9.4	21.0	6.5	1.446 ns
	F	4	310-334	324.5 ± 5.25	10.5	3.2	
Brood 7	M	9	320-331	326.1 ± 1.28	3.9	1.2	$10.345^{* * *}$
	F	5	316-325	319.8 ± 1.74	3.9	1.2	
Brood 8	M	4	338-382	364.0 ± 10.89	21.8	6.0	0.792 ns
	F	3	349-356	353.7 ± 2.33	4.0	1.1	
Brood 9	M	12	353-408	376.2 ± 4.28	14.8	3.9	3.268 **
	F	10	355-413	374.7 ± 4.76	15.0	4.0	
Brood 10	M	9	312-327	319.0 ± 1.89	5.7	1.8	0.223 ns
	F	8	312-336	318.9 ± 3.22	9.1	2.9	

Table 11. Crotalus, general samples, sexual differences in total length, Mann-Whitney test.

(1989) have data (total length) on broods of B. asper. They sorted their materials in eastern and western samples, since they say there is a strong evidence for geographical differentiation of Costa Rican snakes on the sides of the mountain backbone. The results are conflictive: on the East the females are much longer, in the West the opposite occurs.

Campbell \& Solórzano (1992) have, for B. godmani, from Central America, graphs from which it is possible to recover the distributions of frequencies of body length. The Mann-Whitney test revealed significantly longer females ($\mathrm{z}=3.676^{* * *}$).

Also from a graph in McCoy \& Censky's 1992 paper it is possible to recover distributions of frequencies of body length; no significant sexual differences ($\mathrm{z}=1.361$) were revealed by the MannWhitney test.

Tail length

Analyses of the regression of tail length on body length were performed on all samples. Eighteen brood samples were large enough to be processed (Table 13). Among these only 5, not comprising both sexes of any one sample, were found to afford regressions significant at a mild 5% level . No sexual comparisons were thus possible. The impression remains that the bond between tail length and body length in neonates is rather tenuous.

It should not be forgotten at this point that the meaning of regression is not exactly the same in broods and in general samples. In a brood, homogeneous in time, the relationship between any two measurements is purely mechanical: they must be in harmony for the fulfillment of whatever function. Absence of significant regression indicates absence of a joint function; when
regression is significant, the quality of the fit reflects selective pressures. The mechanical functions usually assigned to the tail are housing the hemipenes and associated muscles (independent from body size) and participating in locomotion. It stands to reason that tail length must be relevant to the acoustical properties of the rattling. The only paper we found on the subject (Cook, Rowe \& van Devender, 1994), takes into consideration rattle length, which is relevant, but not tail length.

In the contrasting case, however, of samples encompassing all or most of the size range of the form, thus including specimens of diverse ages, there is the intervention of time: two measurements physically uncorrelated (say tail length and head width), growing concurrently will obviously appear correlated. The features of the regression will depend not on mechanical properties, but on growth rates. Even so, these regressions are in practice extremely valuable, in the description and comparison of units, especially in cases such as the present one, where there is every reason to suppose that male and female general samples, by being random, have similar age structures.

As usual in snakes, samples with broad ranges of both variables show highly significant regressions of tail length on body length (Vanzolini, 1991: 392). Among the 38 samples studied only 4 did not show significant regression (Table 14): Goiandira females, Ouvidor males and Tapurah males and females, probably due to lack of large adults and of juveniles, especially the latter. But a majority of samples, being very favorable to the analysis of regression, afforded interesting results.

Analysis of sexual differences in regression proceeds through two stages (Vanzolini, 1993). First are compared the two coefficients of regression (slopes). If

Table 14. Continued

Sample		N	R (x)	R (y)	b	a	F	r^{2}	db	da
Goiânia	M	7	334-1287	30-146	0.116 ± 0.0047	$-9.05 \pm 17.0344 \mathrm{~ns}$	606.624 ***	0.9918		
	F	4	513-1039	37-72	0.065 ± 0.0082	$3.08 \pm 9.299 \mathrm{~ns}$	63.517 *	0.9695		
Guanambi	M	11	510-1310	50-151	0.113 ± 0.0117	$-5.19 \pm 10.281 \mathrm{~ns}$	$93.487^{* * *}$	0.9122		
	F	11	452-1170	29-84	0.072 ± 0.0057	$-0.82 \pm 5.741 \mathrm{~ns}$	158.182 ***	0.9462	ns	*
Ilha Solteira	M	24	416-1045	46-120	0.122 ± 0.0104	$-11.31 \pm 4.152 \mathrm{~ns}$	138.240***	0.8622		
	F	38	430-1046	30-80	0.070 ± 0.0053	$2.99 \pm 1.968 \mathrm{~ns}$	159.834 ***	0.8162		
Itaipu	M	6	682-1166	64-108	0.098 ± 0.0173	$0.38 \pm 6.793 \mathrm{~ns}$	31.906 **	0.8886		*
	F	4	760-986	57-73	0.070 ± 0.0068	$29.95 \pm 3.431 \mathrm{~ns}$	106.772 ***	0.9816		
Ivaiporã	M	7	303-935	33-109	0.124 ± 0.0198	$-8.82 \pm 10.357 \mathrm{~ns}$	106.204 ***	0.9550		
	F	6	460-1198	33-92	0.082 ± 0.0078	$-6.52 \pm 8.478 \mathrm{~ns}$	110.234 ***	0.9650		
Ouvidor	M	5	674-945	64-91	0.092 ± 0.0309		8.942 ns			
	F	8	421-1041	30-72	0.056 ± 0.0153	$11.76 \pm 4.599 \mathrm{~ns}$	$24.559^{* * *}$	0.8037		
Petrolina	M	11	340-1335	32-161	0.125 ± 0.0059	$10.68 \pm 15.602 \mathrm{~ns}$	451.797 ***	0.9805	*	
	F	20	292-1461	24-108	0.075 ± 0.0037	$0.54 \pm 6.793 \mathrm{~ns}$	411.688***	0.9581		
Rio Verde	M	9	341-1322	32-116	0.079 ± 0.0083	$5.43 \pm 8.624 \mathrm{~ns}$	90.843 ***	0.9285		
	F	9	372-1252	26-84	0.068 ± 0.0056	$-1.16 \pm 6.139 \mathrm{~ns}$	$150.204^{* * *}$	0.9555	ns	,
Salvador	M	16	304-1333	30-139	0.109 ± 0.0052	$-3.85 \pm 9.019 \mathrm{~ns}$	448.452 ***	0.9697	**	
	F	22	373-1121	27-81	0.065 ± 0.0071	$8.52 \pm 3.454 \mathrm{~ns}$	84.844 ***	0.8092		
São Luís	M	12	344-1560	32-145	0.094 ± 0.0038	$1.90 \pm 9.460 \mathrm{~ns}$	$617.131^{* * *}$	0.9841		*
	F	5	406-860	24-64	0.085 ± 0.0082	$-7.06 \pm 7.382 \mathrm{~ns}$	$107.890^{* * *}$	0.9729		
Tapurah	M	5	698-942	76-107	0.117 ± 0.0384		9.229 ns			
	F	5	836-964	70-76	0.023 ± 0.0295		0.613 ns			
Toriba	M	13	402-1030	40-109	0.117 ± 0.0070	$9.69 \pm 6.668 \mathrm{~ns}$	$277.126^{* * *}$	0.9618	*	
	F	9	504-1043	36-69	0.061 ± 0.0095	$7.73 \pm 3.695 \mathrm{~ns}$	$40.907^{* * *}$	0.8539		
Transvaal	M	6	319-1164	28-126	0.113 ± 0.142	$-6.65 \pm 14.303 \mathrm{~ns}$	63.228 ***	0.9405		*
	F	6	531-1019	33-73	0.070 ± 0.0085	$5.20 \pm 6.371 \mathrm{~ns}$	$67.626^{* * *}$	0.9442	ns	*
Valença	M	5	470-725	45-75	0.117 ± 0.0273	$-11.36 \pm 5.439 \mathrm{~ns}$	18.419*	0.8599		*
	F	5	680-1000	42-66	0.056 ± 0.0133	$8.68 \pm 4.359 \mathrm{~ns}$	17.640*	0.8547	,	
Vazante	M	27	256-1443	23-162	0.119 ± 0.0058	$-10.82 \pm 6.970 \mathrm{~ns}$	$415.410^{* * *}$	0.9432	**	
	F	14	247-1187	22-83	0.070 ± 0.0052	$1.65 \pm 5.189 \mathrm{~ns}$	186.043 ***	0.9394		
Vitória da Conquista	M	8	650-1175	56-126	0.135 ± 0.029	$-32.44 \pm 10.459 *$	21.531 **	0.7821	**	
	F	14	373-1022	27-81	0.072 ± 0.0093	$4.23 \pm 4.631 \mathrm{~ns}$	60.239 ***	0.8339		
Xingu	M	4	311-1071	32-117	0.118 ± 0.0058	$-6.84 \pm 17.983 \mathrm{~ns}$	416.592 ***	0.9929	*	
	F	6	220-1035	18-80	0.080 ± 0.0072	$-3.00 \pm 10.162 * * *$	$123.500^{* * *}$	0.9685		

Quantification of sexual dimorphism

Quantification of sexual dimorphism, a longstanding problem, must be met at two levels, that of a single sample and that of a taxonomic group. In the first case there is at present no way of escaping ratios, with their well-known statistical defficiencies (Vanzolini, 1991). In spite of these difficulties, however, ratios have a strong intuitive appeal and are defensible in particular cases (below).

In the case of several (four or more) samples, there is recourse to regression of the means of one sex on those of the other. This has been advocated by King (1989) and by Ranta, Laurila \& Elmberg (1994). Both papers recommend, in a manner not quite clear to us, analysis of residuals. We think, instead, that orthodox analysis is advisable. The null hypothesis, no sexual dimorphism, implies that the regression is linear ($y^{\prime}=a$ $+b x)$ and passes through the origin $(a=0)$ with unit slope ($b=1$). Deviations from this pattern will characterize the type of dimorphism, and the goodness of fit parameters (F andr${ }^{2}$) will estimate the tightness of the relationship. In the case of $a=0$, the linear equation is reduced to $y^{\prime}=b x$, and so ratios are valid $(b=y / x)$.

One major difficult in applying regression analysis to sexual dimorphism resides in the definition of the quantities to represent the sexes. In the case of broods, as already discussed, the means of measurements are adequate. In the case of general samples, however, there are problems. The most widely used variables are the the means of measurements of adult specimens (e.g., Fitch, 1981). The concept of "adult" usually means "reproducing", but this is not free from trouble. It assumes cessation of growth at the attainment of sexual maturity. This is a very debatable
point, that can only be solved, if indeed it can be solved, case by case. In rattlesnakes in general, growth continues after sexual maturity, females even growing through pregnancy (Klauber, 1956: 141). Thus, general samples are samples of an undefinable universe; parametric methods are out. Accordingly, we regressed female against male means of broods, weighting the regressions by the number of females involved. We found no way of treating the general samples.

The results for the broods are summarized on Table 15. The table shows that all fits are excellent, as could be expected (Lande, 1980), and that the statistics of the regressions may to some extent permit to quantify the dimorphism.

In the case of body length (Graph 2), b and a do not differ significantly respectively from 1 and from zero, so it is seen that sexual dimorphism can be characterized as null.

In the case of total length (Graph 3), b does not differ significantly from 1 , but a differs from zero. Notwithstanding, the line of regression falls exactly on the line of evenness. Previous conclusions about this character are confirmed, but an easy and intuitive measure of dimorphism does not result.

Finally, in the case of tail length (Graph 4), an interesting situation arises. Brood 1 stands out from the ensemble, its females having anomalously long tails. Such outliers should always be noted and expunged from the calculations. Graph 4 shows the respective scatter diagram, as well as the computed regression and the line of evenness. It is easy to see that females as a group have consistently shorter tails. An apt measure of the dimorphism, since b does not differ significantly from 1 , is the intercept, a. It is negative and significantly different from zero; intercepts can be easily an accurately

Graph 4. Crotalus, broods, tail length, regression of female on male means.
compared (Zar, 1999).

Fecundity

It has been said in the section on "materials" above that we are fairly secure that our broods are legitimately that, all but one being provided with mothers of record. We also believe that these samples are not biased with regard to the aspects so far studied. We are less certain, however, of their actually representing the full complement, and no more, of the respective clutches. It will be seen below that one brood shows indications of being composite, another incomplete. It is with this caveat in mind that we introduce the matter of fecundity, as the number of young per brood.

Table 16 lists, besides our own data, the statistics of the distributions of frequencies of brood size contained in Klauber's (1956) Table 10:3, calculated by ourselves. A first feature to note is the very high variability, patent in the ranges and coefficients of
variation.
Our data fit in Klauber's table between the second and third highest ranking samples. Analysis of variance and consecutive application of Kramer's test show that our average is significantly less than that of C. adamanteus, undistinguishable from that of C.v. viridis. Variability is of the same order of magnitude.

Araujo \& Perazzolo (1974) report on two broods of Crotalus from the southern state of Rio Grande do Sul, Brasil: 9 and 13 young. They measured but did not sex the specimens.

There is in the literature a reference to a brood of Honduran C. durissus: March (1928) counted 20 young from a mother "slightly less than 5 feet". It is a high count, compatible with ours.

After Klauber (1956) very little meaningful was published about fecundity inCrotalus, in terms of actual broods (some autopsy data are available).

The data we have been able to assemble are shwn on Table 17. It is possible to make the following
comparisons: (i) South American, vs Central American Crotalus durissus, $t=5.541^{* * *}$, the Costa Rican values much higher; (ii) Crotalus viridis oreganus, California vs British Columbia, $t=6,5721$, lower values in Canada.

The available data on Bothrops are shown on Table 18.

A last angle to be pursued is the relationship between mother size and number of young, an aspect
not explored by Klauber. Our data permit a first approach.
On Graph 5 it is seen that among our broods two samples are strongly aberrant from the general trend. Regressions (on body length and total length of the mother) including these specimens are not significant (Table 19). Their removal brings the regressions within significance. It is reasonable to suppose that the brood aberrantly high is composite, the low ones incomplete.

Table 18. Bothrops, data from the literature, brood size.

species	brea brood	source	
B. alternatus	Brasil, Rio Grande do Sul	11,12	Aráujo \& Perazzolo, 1974
	Argentina, captive	25	Serié, 1919
	Zoo	$3,8,9$	Murphy \& Mitchell, 1984
B. atrox	Honduras	$64,65,71$	Ditmars, 1943
	Costa Rica	11	Hirth, 1964
	Guyana	$8,9,11,16$	Beebe, 1946
	Iquitos, Peru	32	Hoge \& Federsoni, 1978
B. moojeni	Santa Cecilia, Ecuador	18,24	Duellman, 1978
	Goiás, Brasil, captive	29	Leloup, 1975

Graph 5. Crotalus, regression of brood size on female body length.
and on Sistrurus catenatus. Males were larger in all but the last-named.

That our materials show no dimorphism in size is interesting because there is in the literature consensus about a correlation (e.g., Shine, 1994) between larger males and the presence of male combat. Our nondimorphic snakes present male combat (Langlada, 1975a; Santos, Ferreira \& Puorto, 1990; Almeida-Santos et. al., 1999), and go against the theory.

Fecundity

Our data fit well the North America ones, near the upper end but in good agreement (Tables 16 and 17). The data from Costa Rica, however, incontrovertible as they are (15 broods) far exceed all other figures, and especially ours $(t=5.519 * * *)$.

As to Bothrops, it is difficult to imagine a worse disorder. It is hard to believe that B. atrox broods within the restricted compass of Central America vary from 11 to 71 , and in tropical South America from 8 to 32. It is clear that this is one area of research in dire need of standardization.

Theoretical context

We started this work with some hope of contributing to the theory of snake reproductive biology, particularly as regards geographical differentiation. Our samples were singularly apt: broods preserved with mothers from broad areas well represented by collections of adults. In fact, we have possibly contributed, but not exactly in the way meant, adding to and checking current theory, but rather by identifying areas of weakness - expressly on what
concerns crotaline viperids, but no doubt extensible to the whole field.

The usual conduct in searching for generalizations on life history has been the statistical manipulation at taxon level of parameters thought to be relevant, designedly obtained or retrieved from the literature. In trying to apply this approach to our data we ran into conceptual and practical difficulties.

It is clear, for instance, that "mean adult length" or any analogous parameter has no precise statistical meaning. In the manner in which it is usually estimated (taking approximately into account sexual maturity) it may eventually turn out to be robust, but this is a point to be proved.

Problems of another type are found concerning sex ratios. The cases of Crotalus horridus and of C. viridis lutosus, examined above, show that, whenever the analysis encompasses enough space and time, intraspecific variability is found. It would be imprudent to taken a given sample ratio as representative of a species.

Finally, fecundity parameters are based on the idea that there is a linear relationship between female legth and brood size (e.g., Iverson, 1987). This is frequently the case, but not always; even when the relationship exists, it is not in itself sufficient to warrant the use of ratios (such as brood size/female length) as fecundity parameters. It always remains to prove that not only the regression is linear, but also that the intercept does not differ significantly from zero. In our case it does differ (Table 19).

Seigel \& Ford (1987: 210) comment that "there are a number of crucial questions concerning snake reproduction that have yet to be adequately addressed (e.g., multiple clutches, tropical cycles, the relationship between hormones and behavior)." To this list might be
northern Pacific rattlesnake (Crotalus viridis oreganus) in northern Idaho. Herpetologica 40 (2): 182-193.

Ditmars, R.L., 1943. Snakes of the world. New York: Macmillan. $x i+207 p$.

Dixon, W.J. \& F.J. Massey, jr., 1983. Introduction to statistical analysis. Fourth edition. New York etc: McGraw Hill. xv + 678 p.

Duellman, W.E., 1958. A monographic study of the colubrid snake genus Leptodeira. Bull. Amer. Mus. Nat. Hist. 114 (1): 1-152.

Duellman, W.E., 1978. The biology of an equatorial herpetofauna in Amazonian Ecuador. Misc. Publ. Univ. Kansas Mus. Nat. Hist. 65: 1-352.

Fitch, H.S. \& B. Glading, 1947. A field study of a rattlesnake population. California Fish and Game 33 (2): 103-123.

Fitch, H.S., 1949. Study of snake populations in central California. Amer. Midl. Nat. 41 (3): 513-579.

Fitch, H.S., 1981. Sexual size differences in reptiles. Misc. Publ. Univ. Kansas Mus. Nat. Hist. 70: 1-72.

Fitch, H.S. \& G.R. Pisani, 1993. Life history traits of the western diamondback rattlesnake (Crotalus atrox) studied from roundup samples in Oklahoma. Occ. Pap. Mus. Hist. Nat. Univ. Kansas 156: 1-24.Gibbons, J.W., 1972. Reproduction, growth, and sexual dimorphism in the canebrake rattlesnake. Copeia 1972 (2): 222-226.

Greene, H.W. \& G.V. Oliver jr., 1965. Notes on the natural history of the western massasauga. Herpetologica 21 (3): 225-228.

Heyrend, F. LaM. \& A. Call, 1951. Growth and age in western striped racer and Great Basin rattlesnake., pp. 28-40 in A.M. Woodbury, ed., Symposium, A snake den in Tooele County, Utah. Herpetologica 7 (1).

Hirth, H.F., 1964. Observations on the Fer-de-lance, Bothrops atrox, in coastal Costa Rica. Copeia 1964 (2): 453-454.

Hirth, H.F. \& A.C. King, 1968. Biomass densities of snakes in the cold desert of Utah. Herpetologica 24: 333-335.

Hoge, A.R., 1966. Preliminary account on Neotropical Crotalinae (Serpentes Viperidae). Mem. Inst. Butantan 32 (1965): 109184.

Hoge, A.R. \& P.A. Federsoni jr., 1978. Observações sobre uma ninhada de Bothrops atrox (Linnaeus, 1758) (Serpentes: Viperidae: Crotalinae). Mem. Inst. Butantan 40/41 (1976/ 77): 19-36.

Iverson, J.B., 1987. Patterns of relative fecundity in snakes. Florida Scientist 50 (4): 223-233.

Julian, G., 1951. Sex ratios of the winter populations, p. 20-24 in A.M. Woodbury, ed., Symposium, A snake den in Tooele County, Utah. Herpetologica 7 (1).

Keenlyne, K.D., 1978. Reproductive cycles in two species of rattlesnakes. Amer. Midl. Nat. 100 (2): 368-375.

King, R.B., 1989. Sexual dimorphism in snake tail length: sexual selection, natural selection, or morphological constraint? Biol. J. Linn. Soc. London 38: 133-154.

Klauber, L.M., 1936. A statistical study of the rattlesnakes. I. Introduction. II. Sex ratio in rattlesnakes populations. III. Birth rate. Occ. Pap. San Diego Soc. Nat. Hist. 1: 2-23.

Klauber, L.M., 1943. Tail length differences in snakes, with notes on sexual dimorphism and the coefficient of divergence. Bull. Zool. Soc. Zan Diego 18: 5-60.

Klauber, L.M., 1956. Rattlesnakes, their habits life histories, and influence on mankind. 2 vols. Berkeley and Los Angeles: Univ. California Press.

Lande, R., 1980. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34 (2). 292305.

Langlada, F.G., 1975. Anomalias congênitas em uma ninhada de "cascaveis". Mem. Inst. Butantan 37 (1974): 239-251.

Langlada, F.G., 1975. Combat-dance between males of Brazilian Crotalus durissus. J. Herp. 9 (4): 349-351.

Leloup, P., 1975. Observations sur la reproduction de Bothrops moojeni Hoge en capitivité. Acta Zool. Pathol. Antwerp.
tina de Ciencias Naturales (Tucumán, 1916). Buenos Aires: Casa Editora "Coni".

Shine, R., 1994. Sexual size dimorphism in snakes revisited. Copeia 1994 (2): 326-346.

Siegel, S., 1956. Nonparametric statistics for the behavioral sciences. New York etc.: McGraw-Hill. xvii +312 p.

Siegel, S., 1975. Estatística não-paramétrica para as ciências do comportamento. (Brasilian translation). S. Paulo: McGrawHill do Brasil. 350 p.

Silva-Leme, R.A., 1959. Curso de Estatística. 3 vols. São Paulo: Universidade de São Paulo, Escola Politécnica.

Solórzano, A., 1988. Distribución y aspectos reproductivos de la mano de piedra, Bothrops nummifer (Serpentes: Viperidae), en Costa Rica. Rev. Biol. Trop. 37 (2): 133-137.

Solórzano, A. \& L. Cerdas, 1988. Biologia reproductiva de la cascabel centroamericana Crotalus durissus durissus (Serpentes: Viperidae) en Costa Rica. Rev. Biol. Trop. 36 (2A): 221-226.

Solórzano, A. \& L. Cerdas, 1989. Reproductive biology and distribution of the terciopelo, Bothrops asper Garman (Serpentes: Viperidae) in Costa Rica. Herpetologica 45 (4): 444450.

Swanson, P.L., 1933. The size of Sistrurus catenatus catenatusat birth. Copeia 1933 (1): 37.

Timmerman, W.W., 1995. Home range, habitat use, and behavior of the estern diamaondback rattlesnake (Crotalus adamanteus) on the Ordway Preserve. Bull. Florida Mus. Nat. Hist. 38: 127-158. pls.

Torres, R.B., F.R. Martins \& L.S. Kinoshita, 1997. Climate, soil and tree flora relationships in forests in the state of São Paulo, southeastern Brasil. Rev. Brasil. Bot. 20 (1): 41-49.

Vanzolini, P.E., 1991. A biometrical note on Bothrops moojeni Hoge, 1966 (Serpentes, Viperidae). An. Acad. Brasil. Ci. 63 (4): 389-401.

Vanzolini, P.E., 1993. Métodos estatísticos elementares em sistemática zoológica. S. Paulo: Editora Hucitec. 130 p.

Vanzolini, P.E. \& W.R. Heyer, 1985. The American herpetofauna and the interchange, p. 475-487 in F.G. Stehli \& S.D. Webb, eds, The great American biotic interchange. New York and London: Plenum.

Watkins-Colwell, G.J., 1995. Natural history notes: Sistrurus catenatus catenatus (Eastern Massasauga). Reproduction. Herp. Rev. 26 (1): 40.

Wright, B.A., 1941. Habit and habitat studies of the massasauga rattlesnake (Sistrurus catenatus catenatus Raf.) in northeastern Illinois. Amer. Midl. Nat. 25 (3): 659-672.

Zar, J.H., 1999. Biostatistical analysis. Fourth edition. Upper Sadlle River, New Jersey: Prentice Hall. xi $+661+212+11$ $+20+23 \mathrm{p}$.

[^0]: 1.Museu de Zoologia, Universidade de São Paulo.

